The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.
Estrogen plays an essential physiologic role in reproduction and a pathologic one in breast cancer. The completion of the human genome has allowed the identification of the expressed regions of protein-coding genes; however, little is known concerning the organization of their cis-regulatory elements. We have mapped the association of the estrogen receptor (ER) with the complete nonrepetitive sequence of human chromosomes 21 and 22 by combining chromatin immunoprecipitation (ChIP) with tiled microarrays. ER binds selectively to a limited number of sites, the majority of which are distant from the transcription start sites of regulated genes. The unbiased sequence interrogation of the genuine chromatin binding sites suggests that direct ER binding requires the presence of Forkhead factor binding in close proximity. Furthermore, knockdown of FoxA1 expression blocks the association of ER with chromatin and estrogen-induced gene expression demonstrating the necessity of FoxA1 in mediating an estrogen response in breast cancer cells.
SummaryChromatin structure affects the accessibility of DNA to transcription, repair, and replication. Changes in chromatin structure occur during development, but less is known about changes during aging. We examined the state of chromatin structure and its effect on gene expression during aging in Drosophila at the whole genome and cellular level using whole-genome tiling microarrays of activation and repressive chromatin marks, whole-genome transcriptional microarrays and single-cell immunohistochemistry. We found dramatic reorganization of chromosomal regions with age. Mapping of H3K9me3 and HP1 signals to fly chromosomes reveals in young flies the expected high enrichment in the pericentric regions, the 4th chromosome, and islands of facultative heterochromatin dispersed throughout the genome. With age, there is a striking reduction in this enrichment resulting in a nearly equivalent level of H3K9me3 and HP1 in the pericentric regions, the 4th chromosome, facultative heterochromatin, and euchromatin. These extensive changes in repressive chromatin marks are associated with alterations in age-related gene expression. Large-scale changes in repressive marks with age are further substantiated by single-cell immunohistochemistry that shows changes in nuclear distribution of H3K9me3 and HP1 marks with age. Such epigenetic changes are expected to directly or indirectly impinge upon important cellular functions such as gene expression, DNA repair, and DNA replication. The combination of genome-wide approaches such as whole-genome chromatin immunoprecipitation and transcriptional studies in conjunction with single-cell immunohistochemistry as shown here provide a first step toward defining how changes in chromatin may contribute to the process of aging in metazoans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.