Nanoscale transport of light through single molecule systems is of fundamental importance for light harvesting, nanophotonic circuits, and for understanding photosynthesis. Studies on organization of molecular entities for directional transfer of excitation energy have focused on energy transfer cascades via multiple small molecule dyes. Here, we investigate a single molecule conjugated polymer as a photonic wire. The phenylene-vinylene-based polymer is functionalized with multiple DNA strands and immobilized on DNA origami by hybridization to a track of single-stranded staples extending from the origami structure. Donor and acceptor fluorophores are placed at specific positions along the polymer which enables energy transfer from donor to polymer, through the polymer, and from polymer to acceptor. The structure is characterized by atomic force microscopy, and the energy transfer is studied by ensemble fluorescence spectroscopy and single molecule TIRF microscopy. It is found that the polymer photonic wire is capable of transferring light over distances of 24 nm. This demonstrates the potential residing in the use of conjugated polymers for nanophotonics.
Automated chemical synthesis of oligonucleotides is of fundamental importance for the production of primers for the polymerase chain reaction (PCR), for oligonucleotide-based drugs, and for numerous other medical and biotechnological applications. The highly optimised automised chemical oligonucleotide synthesis relies upon phosphoramidites as the phosphate precursors and one of the drawbacks of this technology is the poor bench stability of phosphoramidites. Here, we report on the development of an on-demand flow synthesis of phosphoramidites from their corresponding alcohols, which is accomplished with short reaction times, near-quantitative yields and without the need of purification before being submitted directly to automated oligonucleotide synthesis. Sterically hindered as well as redox unstable phosphoramidites are synthesised using this methodology and the subsequent couplings are near-quantitative for all substrates. The vision for this technology is direct integration into DNA synthesisers thereby omitting manual synthesis and storage of phosphoramidites.
Target identification is a critical pillar within the drug discovery process that involves deconvoluting the protein target of a pharmacologically active small molecule ligand. While photoaffinity labeling strategies have become the benchmark for target deconvolution of small molecules owing to their reliance on external activation to induce covalent protein capture, the process of target identification remains one of the most technically challenging aspects of early drug discovery. Thus, there is a strong demand for new technologies that allow for controlled activation of chemical probes to covalently label their protein target. Here, we introduce an electroaffinity labeling (ECAL) platform which leverages the use of a small, redox-active diazetidinone (DZE) functional group to enable chemoproteomic-based target identification of pharmacophores within live cell environments.
Glycolaldehyde, produced from cracking of glucose, was tested as a substitute for formaldehyde in urea-based wood adhesives. Initially, different parameters (water content, aldehyde/urea-ratio, curing temperature, and time) were screened to identify the optimal curing conditions providing the highest bond strength. Afterwards, the system was reformulated as a 2-component system and compared to a urea-formaldehyde 2-component system, which showed a comparatively low strength of the resulting resin. Different hardeners were tested, and AlCl3 showed an 80% increase in bond strength for the resin compared to NH4Cl. Infrared and nuclear magnetic resonance analyses were performed to ensure formation of the desired aminal bond network, which showed that the hardener was essential for proper curing of the resin. Finally, a urea-glycolaldehyde-formaldehyde resin was tested that further indicated major differences between the reactivity of formaldehyde and glycolaldehyde.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.