Self-organized silver nanostructures were grown in porous Si/SiO 2 matrix fabricated by ion track technology. The different silver nanostructures with shapes like "sunflowers", "azalea" or "corn" were realized by applying wet-chemical electroless deposition. We show that reproducible self-organized silver "sunflower" like nanostructures provide a high enhanced Raman signal of Nile blue dye molecules. Signal enhancement for a few or even just a single silver "sunflower" is demonstrated by analyzing the surface-enhanced Raman signature of Nile blue dye molecules. According to this, the silver nanostructures can act as efficient surfaces for surface enhanced Raman spectroscopy as well as (bio)-sensor applications.
The combination of CdSe nanoparticles as photosensitizers with [FeFe]-hydrogenase mimics is known to result in efficient systems for light-driven hydrogen generation with reported turnover numbers in the order of 10 4 -10 6 . Nevertheless, little is known about the details of the light-induced charge-transfer processes. Here we investigate the timescale of light-induced electron transfer kinetics for a simple model system consisting of CdSe quantum dots (QDs) of 2.0 nm diameter and a simple [FeFe]-hydrogenase mimic adsorbed to the QD surface under non-catalytic conditions. Our (time-resolved) spectroscopic investigation shows that both hot electron transfer on a sub-ps timescale and band-edge electron transfer on a sub-10-ps timescale from photoexcited QDs to adsorbed [FeFe]-hydrogenase mimics occurs. Fast recombination via back-electrontransfer is observed in the absence of a sacrificial agent or protons, which, under real catalytic conditions, would quench remaining holes or could stabilize the charge separation, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.