Abstract-This article proposes the use of Vector Symbolic Architectures for implementing Hierarchical Graph Neuron, an architecture for memorizing patterns of generic sensor stimuli. The adoption of a Vector Symbolic representation ensures a one-layered design for the approach, while maintaining the previously reported properties and performance characteristics of Hierarchical Graph Neuron, and also improving the noise resistance of the architecture. The proposed architecture enables a linear (with respect to the number of stored entries) time search for an arbitrary sub-pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.