Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.
Tumor mutation burden (TMB) is a well-known efficacy predictor for checkpoint inhibitor immunotherapies. Currently, TMB assessment relies on DNA sequencing data. Gene expression profiling by RNA sequencing (RNAseq) is another type of analysis that can inform clinical decision-making and including TMB estimation may strongly benefit this approach, especially for the formalin-fixed, paraffin-embedded (FFPE) tissue samples. Here, we for the first time compared TMB levels deduced from whole exome sequencing (WES) and RNAseq profiles of the same FFPE biosamples in single-sample mode. We took TCGA project data with mean sequencing depth 23 million gene-mapped reads (MGMRs) and found 0.46 (Pearson)–0.59 (Spearman) correlation with standard mutation calling pipelines. This was converted into low (<10) and high (>10) TMB per megabase classifier with area under the curve (AUC) 0.757, and application of machine learning increased AUC till 0.854. We then compared 73 experimental pairs of WES and RNAseq profiles with lower (mean 11 MGMRs) and higher (mean 68 MGMRs) RNA sequencing depths. For higher depth, we observed ~1 AUC for the high/low TMB classifier and 0.85 (Pearson)–0.95 (Spearman) correlation with standard mutation calling pipelines. For the lower depth, the AUC was below the high-quality threshold of 0.7. Thus, we conclude that using RNA sequencing of tumor materials from FFPE blocks with enough coverage can afford for high-quality discrimination of tumors with high and low TMB levels in a single-sample mode.
Uterine leiomyosarcoma (UL) is a rare malignant tumor that develops from the uterine smooth muscle tissue. Due to the low frequency and lack of sufficient data from clinical trials there is currently no effective treatment that is routinely accepted for UL. Here we report a case of a 65-years-old female patient with metastatic UL, who progressed on ifosfamide and doxorubicin therapy and developed severe hypertensive crisis after administration of second line pazopanib, which lead to treatment termination. Rapid progression of the tumor stressed the need for the alternative treatment options. We performed RNA sequencing and whole exome sequencing profiling of the patient’s biopsy and applied Oncobox bioinformatic algorithm to prioritize targeted therapeutics. No clinically relevant mutations associated with drug efficiencies were found, but the Oncobox transcriptome analysis predicted regorafenib as the most effective targeted treatment option. Regorafenib administration resulted in a complete metabolic response which lasted for 10 months. In addition, RNA sequencing analysis revealed a novel cancer fusion transcript of YWHAE gene with fusion partner JAZF1. Several chimeric transcripts for YWHAE and JAZF1 genes were previously found in uterine neoplasms and some of them were associated with tumor prognosis. However, their combination was detected in this study for the first time. Taken together, these findings evidence that RNA sequencing may complement analysis of clinically relevant mutations and enhance management of oncological patients by suggesting putative treatment options.
Background: Overall survival of advanced colorectal cancer (CRC) patients remains poor, and gene expression analysis could potentially complement detection of clinically relevant mutations to personalize CRC treatments. Methods: We performed RNA sequencing of formalin-fixed, paraffin-embedded (FFPE) cancer tissue samples of 23 CRC patients and interpreted the data obtained using bioinformatic method Oncobox for expression-based rating of targeted therapeutics. Oncobox ranks cancer drugs according to the efficiency score calculated using target genes expression and molecular pathway activation data. The patients had primary and metastatic CRC with metastases in liver, peritoneum, brain, adrenal gland, lymph nodes and ovary. Two patients had mutations in NRAS, seven others had mutated KRAS gene. Patients were treated by aflibercept, bevacizumab, bortezomib, cabozantinib, cetuximab, crizotinib, denosumab, panitumumab and regorafenib as monotherapy or in combination with chemotherapy, and information on the success of totally 39 lines of therapy was collected. Results: Oncobox drug efficiency score was effective biomarker that could predict treatment outcomes in the experimental cohort (AUC 0.77 for all lines of therapy and 0.91 for the first line after tumor sampling). Separately for bevacizumab, it was effective in the experimental cohort (AUC 0.87) and in 3 independent literature CRC datasets, n = 107 (AUC 0.84–0.94). It also predicted progression-free survival in univariate (Hazard ratio 0.14) and multivariate (Hazard ratio 0.066) analyses. Difference in AUC scores evidences importance of using recent biosamples for the prediction quality. Conclusion: Our results suggest that RNA sequencing analysis of tumor FFPE materials may be helpful for personalizing prescriptions of targeted therapeutics in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.