Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23 m2 g(-1), respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.
Single crystals of five very low-melting ionic liquids, [emim]BF4 (mp -1.3 degrees C), [bmim]PF6 (+1.9 degrees C), [bmim]OTf (+6.7 degrees C), [hexpy]NTf2 (-3.6 degrees C), and [bmpyr]NTf2 (-10.8 degrees C), have been grown using a combined calorimetric and zone-melting approach and their crystal structures determined by X-ray diffraction.
Pulling the old switcheroo: Microporosity can be switched “on” and “off” in a crystalline molecular organic solid composed of cage molecules (see scheme). The switch is facilitated by conformational flexibility in the soft organic crystal state.
Interlocked molecules comprise two or more separate components that are joined by 'mechanical' rather than covalent bonds. In other words, these molecular assemblies cannot be dissociated without the cleavage of one or more chemical bonds. Although recent progress has enabled the preparation of such topologies through coordination or templating interactions, three-dimensional interlocked covalent architectures remain difficult to prepare. Here, we present a template-free one-pot synthesis of triply interlocked organic cages. These 20-component dimers consist of two tetrahedral monomeric cages each built from four nodes and six linkers. The monomers exhibit axial chirality, which is recognized by their partner cage during the template-free interlocking assembly process. The dimeric cages also include two well-defined cavities per assembly, which for one of the systems studied led to the formation of a supramolecular host-guest chain. These interlocked organic molecules may prove useful as part of a toolkit for the modular construction of complex porous solids and other supramolecular assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.