The paper considers a time-efficient implementation of the k nearest neighbours (kNN) algorithm. A well-known approach for accelerating the kNN algorithm is to utilise dimensionality reduction methods based on the use of space-filling curves. In this paper, we take this approach further and propose an algorithm that employs multiple space-filling curves and is faster (with comparable quality) compared with the kNN algorithm, which uses kd-trees to determine the nearest neighbours. A specific method for constructing multiple Peano curves is outlined, and statements are given about the preservation of object proximity information in the course of dimensionality reduction. An experimental comparison with known kNN implementations using kd-trees was performed using test and real-life data.
In this paper, we describe the Globalizer software system for solving the global optimization problems. The system is designed to maximize the use of computational potential of the modern high-performance computational systems in order to solve the most time-consuming optimization problems. The highly parallel computations are facilitated using various distinctive computational schemes: processing several optimization iterations simultaneously, reducing multidimensional optimization problems using multiple Peano spacefilling curves, and multi-stage computing based on the nested block reduction schemes. These novelties provide for the use of the supercomputer system capabilities with shared and distributed memory and with large numbers of processors to solve the global optimization problems efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.