The momentum dependence of the nematic order parameter is an important ingredient in the microscopic description of iron-based high-temperature superconductors. While recent reports on FeSe indicate that the nematic order parameter changes sign between electron and hole bands, detailed knowledge is still missing for other compounds. Combining angle-resolved photoemission spectroscopy (ARPES) with uniaxial strain tuning, we measure the nematic band splitting in both FeSe and BaFe2As2 without interference from either twinning or magnetic order. We find that the nematic order parameter exhibits the same momentum dependence in both compounds with a sign change between the Brillouin center and the corner. This suggests that the same microscopic mechanism drives the nematic order in spite of the very different phase diagrams.
Ferroquadrupole order associated with local 4f atomic orbitals of rare-earth ions is a realization of electronic nematic order. However, there are relatively few examples of intermetallic materials which exhibit continuous ferroquadrupole phase transitions, motivating the search for additional materials that fall into this category. Furthermore, it is not clear a priori whether experimental approaches based on transport measurements which have been successfully used to probe the nematic susceptibility in materials such as the Fe-based superconductors will be as effective in the case of 4f intermetallic materials, for which the important electronic degrees of freedom are local rather than itinerant and are consequently less strongly coupled to the charge-carrying quasiparticles near the Fermi energy. In the present work, we demonstrate that the intermetallic compound YbRu2Ge2 exhibits a tetragonal-to-orthorhombic phase transition consistent with ferroquadrupole order of the Yb ions and go on to show that elastoresistivity measurements can indeed provide a clear window on the diverging nematic susceptibility in this system. This material provides an arena in which to study the causes and consequences of electronic nematicity.
Studying the response of materials to strain can elucidate subtle properties of electronic structure in strongly correlated materials. So far, mostly the relation between strain and resistivity, the so called elastoresistivity, has been investigated. The elastocaloric effect is a second rank tensor quantity describing the relation between entropy and strain. In contrast to the elastoresistivity, the elastocaloric effect is a thermodynamic quantity. Experimentally, elastocaloric effect measurements are demanding since the thermodynamic conditions during the measurement have to be well controlled. Here we present a technique to measure the elastocaloric effect under quasi adiabatic conditions. The technique is based on oscillating strain, which allows for increasing the frequency of the elastocaloric effect above the thermal relaxation rate of the sample. We apply the technique to Co-doped iron pnictide superconductors and show that the thermodynamic signatures of second order phase transitions in the elastocaloric effect closely follow those observed in calorimetry experiments. In contrast to the heat capacity, the electronic signatures in the elastocaloric effect are measured against a small phononic background even at high temperatures, establishing this technique as a powerful complimentary tool for extracting the entropy landscape proximate to a continuous phase transition.
The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.