Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long-lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of 'cosmopolitan' species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re-instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re-evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between H. carunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re-affirm the older notion that H. carunculata is a cohesive species with a broad distribution across the Atlantic Ocean.
In Brief There is great enthusiasm for the potential of digital health solutions in medicine and diabetes to address key care challenges: patient and provider burden, lack of data to inform therapeutic decision-making, poor access to care, and costs. However, the field is still in its nascent days; many patients and providers do not currently engage with digital health tools, and for those who do, the burden is still often high. Over time, digital health has excellent potential to collect data more seamlessly, make collected data more useful, and drive better outcomes at lower costs in less time. But there is still much to prove. This review offers key background information on the current state of digital health in diabetes, six of the most promising digital health technologies and services, and the challenges that remain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.