After assessing patient perspectives on the success of current diabetes therapies and the factors that have the greatest impact on daily life, we show that time-in-range is a crucial outcome for people with diabetes and that current therapies are falling short on this metric. We also show that patients feel significant stress and worry, and they believe they are falling short in diet, exercise, and weight maintenance. In addition, they believe diet and exercise and in-range blood glucose are the biggest drivers of improved diabetes management and mindset. Together, these findings support the need for therapies that improve outcomes including and beyond A1C.
In Brief There is great enthusiasm for the potential of digital health solutions in medicine and diabetes to address key care challenges: patient and provider burden, lack of data to inform therapeutic decision-making, poor access to care, and costs. However, the field is still in its nascent days; many patients and providers do not currently engage with digital health tools, and for those who do, the burden is still often high. Over time, digital health has excellent potential to collect data more seamlessly, make collected data more useful, and drive better outcomes at lower costs in less time. But there is still much to prove. This review offers key background information on the current state of digital health in diabetes, six of the most promising digital health technologies and services, and the challenges that remain.
There are few effective targeted strategies to reduce hepatic ischemia-reperfusion (IR) injury, a contributor to poor outcomes in liver transplantation recipients. It has been proposed that IR injury is driven by the generation of reactive oxygen species (ROS). However, recent studies implicate other mediators of the injury response, including mitochondrial metabolic dysfunction. We examined changes in global gene expression after transient hepatic ischemia and at several early reperfusion times to identify potential targets that could be used to protect against IR injury. Male Wistar rats were subjected to 30 minutes of 70% partial warm ischemia followed by 0, 0.5, 2, or 6 hours of reperfusion. RNA was extracted from the reperfused and non-ischemic lobes at each time point for microarray analysis. Identification of differentially expressed genes and pathway analysis were used to characterize IR-induced changes in the hepatic transcriptome. Changes in the reperfused lobes were specific to the various reperfusion times. We made the unexpected observation that many of these changes were also present in tissue from the paired non-ischemic lobes. However, the earliest reperfusion time, 30 minutes, showed a marked increase in the expression of a set of immediate-early genes (c-Fos, c-Jun, Atf3, Egr1) that was exclusive to the reperfused lobe. We interpreted these results as indicating that this early response represented a tissue autonomous response to reperfusion. In contrast, the changes that occurred in both the reperfused and non-ischemic lobes were interpreted as indicating a non-autonomous response resulting from hemodynamic changes and/or circulating factors. These tissue autonomous and non-autonomous responses may serve as targets to ameliorate IR injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.