Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δvtc4 strain of Saccharomyces cerevisiae, reaching 10% and 20% of the respective levels of the wild-type strain. The Δvtc4 strain has decreased resistance to alkaline stress but, unexpectedly, increased resistance to oxidation and heavy metal excess. We suggest that increased resistance is achieved through elevated expression of DDR2, which is implicated in stress response, and reduced expression of PHO84 encoding a phosphate and divalent metal transporter. The decreased Mg2+-dependent phosphate accumulation in Δvtc4 cells is consistent with reduced expression of PHO84. We discuss a possible role that polyP level plays in cellular signaling of stress response mobilization in yeast.
The yeast Saccharomyces cerevisiae accumulates the high levels of inorganic polyphosphates (polyPs) performing in the cells numerous functions, including phosphate and energy storage. The effects of vacuolar membrane ATPase (V-ATPase) dysfunction were studied on polyP accumulation under short-term cultivation in the Pi-excess media after Pi starvation. The addition of bafilomycin A1, a specific inhibitor of V-ATPase, to the medium with glucose resulted in strong inhibition of the synthesis of long-chain polyP and in substantial suppression of short-chain polyP. The addition of bafilomycin to the medium with ethanol resulted in decreased accumulation of high-molecular polyP, while the accumulation of low-molecular polyP was not affected. The levels of polyP synthesis in the mutant strain with a deletion in the vma2 gene encoding a V-ATPase subunit were significantly lower than in the parent strain in the media with glucose and with ethanol. The synthesis of the longest chain polyP was not observed in the mutant cells. The synthesis of only the low-polymer acid-soluble polyP fraction occurred in the cells of the mutant strain. However, the level of polyP1 was nearly tenfold lower than compared to the cells of the parent strain. Both bafilomycin A1 and the mutation in vacuolar ATPase subunit vma2 lead to a considerable decrease of cellular polyP accumulation. Thus, the defects in ΔμH(+) formation on the vacuolar membrane resulted in the decrease of polyP biosynthesis in S. cerevisiae.
Inorganic polyphosphate (polyP) is an important factor of stress tolerance in microbial cells. In yeast, the major enzyme of polyP biosynthesis is Vtc4, a subunit of the vacuole transporter chaperone (VTC) complex. In this study, we demonstrated that Vtc4 knockout in Saccharomyces cerevisiae not only decreased polyP content but also caused shifts in the composition of the intracellular polyP pool and changed the stress tolerance profile. In the mutant S. cerevisiae, the level of short-chain acid-soluble polyPs was decreased nearly 10-fold, whereas that of longer acid-insoluble polyPs was decreased only 2-fold, suggesting the existence of other enzymes compensating the production of long-chain polyPs. The Δvtc4 mutant showed inhibition of Mg2+-dependent phosphate uptake and decreased resistance to alkaline stress but increased tolerance to oxidation and heavy metal ions, especially Mn2+. Quantitative PCR revealed the upregulation of the DDR2 gene implicated in multiple stress responses and downregulation of PHO84 encoding a phosphate and Mn2+ transporter, which could account for the effects on phosphate uptake and Mn2+-related stress response in the Δvtc4 mutant. Our study indicates that short-chain polyPs, plays an important role in the regulation of stress response in yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.