Eight strains of Pseudozyma fusiformata were examined for antifungal activity. All of them had the same spectrum of action and were active against many species of yeasts, yeast-like and filamentous fungi. They secreted glycolipids, which were purified from the culture liquid by column and thin-layer chromatography. According to nuclear magnetic resonance and mass-spectroscopy experiments all strains produced ustilagic acid, a cellobioside-containing 2,15,16-trihydroxypalmitic acid as aglycon, 3-hydroxycaproic acid and acetic acid as O-acylic substituents.
The ustilaginaceous yeast Pseudozyma fusiformata secreted glycolipids which were lethal to many yeasts and fungi more active at pH of about 4.0, and in the temperature range of 20-30 degrees C. Purified glycolipids enhanced non-specific permeability of the cytoplasmic membrane in sensitive cells, which resulted in ATP leakage and susceptibility of the cells to staining with bromocresol purple. Cells of Saccharomyces cerevisiae lost the ability to acidify the medium. Basidiomycetous yeasts were more sensitive to the glycolipids than ascomycetous ones. The minimal effective glycolipid concentration was 0.13 and 0.26 mg ml(-1) for Cryptococcus terreus and Filobasidiella neoformans, while for Candida albicans and Saccharomyces cerevisiae it was 1.0 and 1.6 mg ml(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.