Cultures of human lymphocytes exposed in microgravity to the mitogen concanavalin A showed less than 3 percent of the activation of ground controls. This result supports the hypothesis, based on simulations at low g and experiments at high g, that microgravity depresses whereas high gravity enhances cell proliferation rates. The effects of gravity are particularly strong in cells undergoing differentiation.
When HeLa cells, chicken embryo fibroblasts, sarcoma Galliera cells, Friend leukemia virus transformed cells and human lymphocytes are cultured in a hypergravitational field (e.g. 10 X g) proliferation rate is increased by 20-30%, whereas glucose consumption per cell is lower than at 1 X g. Tracking of cell movements on gold-coated substrates reveals that cell migration is hindered at high-g. These findings suggest that under gravitational stress the cell is either capable of shifting to other metabolic pathways and/or consumes less energy at high-g than at 1 X g. This work describes ground-based investigations related to experiments to be performed on future Spacelab missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.