A new mechanism of the magnetoelectric effect based on the spin supercurrent is theoretically presented in terms of a microscopic electronic model for noncollinear magnets. The electric polarization P(ij) produced between the two magnetic moments S(i) and S(j) is given by P proportional e(ij) X (S(i) X S(j)) with e(ij) being the unit vector connecting the sites i and j. Applications to the spiral spin structure and the gauge theoretical interpretation are discussed.
We review recent developments in our understanding of how impurities influence the electronic states in the bulk of superconductors. Our focus is on the quasi-localized states in the vicinity of impurity sites in conventional and unconventional superconductors and our goal is to provide a unified framework for their description. The non-magnetic impurity resonances in unconventional superconductors are directly related to the Yu-Shiba-Rusinov states around magnetic impurities in conventional s-wave systems. We review the physics behind these states, including quantum phase transition between screened and unscreened impurity, and emphasize recent work on d-wave superconductors. The bound states are most spectacularly seen in scanning tunneling spectroscopy measurements on high-Tc cuprates, which we describe in detail. We also discuss very recent progress on the states coupled to impurity sites which have their own dynamics, and impurity resonances in the presence of an order competing with superconductivity. Last part of the review is devoted to influence of local deviations of the impurity concentration from its average value on the density of states in s-wave superconductors. We review how these fluctuations affect the density of states and show that s-wave superconductors are, strictly speaking, gapless in the presence of an arbitrarily small concentration of magnetic impurities.
Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically different from that characterized by free electrons in conventional metals. We report on the electronic properties of a prototypical correlated insulator vanadium dioxide in which the metallic state can be induced by increasing temperature. Scanning near-field infrared microscopy allows us to directly image nanoscale metallic puddles that appear at the onset of the insulator-to-metal transition. In combination with far-field infrared spectroscopy, the data reveal the Mott transition with divergent quasi-particle mass in the metallic puddles. The experimental approach used sets the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.