We review recent developments in our understanding of how impurities influence the electronic states in the bulk of superconductors. Our focus is on the quasi-localized states in the vicinity of impurity sites in conventional and unconventional superconductors and our goal is to provide a unified framework for their description. The non-magnetic impurity resonances in unconventional superconductors are directly related to the Yu-Shiba-Rusinov states around magnetic impurities in conventional s-wave systems. We review the physics behind these states, including quantum phase transition between screened and unscreened impurity, and emphasize recent work on d-wave superconductors. The bound states are most spectacularly seen in scanning tunneling spectroscopy measurements on high-Tc cuprates, which we describe in detail. We also discuss very recent progress on the states coupled to impurity sites which have their own dynamics, and impurity resonances in the presence of an order competing with superconductivity. Last part of the review is devoted to influence of local deviations of the impurity concentration from its average value on the density of states in s-wave superconductors. We review how these fluctuations affect the density of states and show that s-wave superconductors are, strictly speaking, gapless in the presence of an arbitrarily small concentration of magnetic impurities.
Formation of electron pairs is essential to superconductivity. For conventional superconductors, tunnelling spectroscopy has established that pairing is mediated by bosonic modes (phonons); a peak in the second derivative of tunnel current d2I/dV2 corresponds to each phonon mode. For high-transition-temperature (high-T(c)) superconductivity, however, no boson mediating electron pairing has been identified. One explanation could be that electron pair formation and related electron-boson interactions are heterogeneous at the atomic scale and therefore challenging to characterize. However, with the latest advances in d2I/dV2 spectroscopy using scanning tunnelling microscopy, it has become possible to study bosonic modes directly at the atomic scale. Here we report d2I/dV2 imaging studies of the high-T(c) superconductor Bi2Sr2CaCu2O8+delta. We find intense disorder of electron-boson interaction energies at the nanometre scale, along with the expected modulations in d2I/dV2 (refs 9, 10). Changing the density of holes has minimal effects on both the average mode energies and the modulations, indicating that the bosonic modes are unrelated to electronic or magnetic structure. Instead, the modes appear to be local lattice vibrations, as substitution of 18O for 16O throughout the material reduces the average mode energy by approximately 6 per cent--the expected effect of this isotope substitution on lattice vibration frequencies. Significantly, the mode energies are always spatially anticorrelated with the superconducting pairing-gap energies, suggesting an interplay between these lattice vibration modes and the superconductivity.
Two major themes in the physics of condensed matter are quantum critical phenomena and unconventional superconductivity. These usually occur in the context of competing interactions in systems of strongly-correlated electrons. All this interesting physics comes together in the behavior of the recently discovered iron pnictide compounds that have generated enormous interest because of their moderately high-temperature superconductivity. The ubiquity of antiferromagnetic ordering in their phase diagrams naturally raises the question of the relevance of magnetic quantum criticality, but the answer remains uncertain both theoretically and experimentally. Here we show that the undoped iron pnictides feature a novel type of magnetic quantum critical point, which results from a competition between electronic localization and itinerancy. Our theory provides a mechanism to understand the experimentally-observed variation of the ordered moment among the undoped iron pnictides. We suggest P substitution for As in the undoped iron pnictides as a means to access this new example of magnetic quantum criticality in an unmasked fashion. Our findings point to the iron pnictides as a much-needed new setting for quantum criticality, one that offers a new set of control parameters.Comment: (v3) New abstract, more explanatory material, accepted for PNA
Data from ab-oriented YBa 2 Cu 3 O 7 ͞I͞Cu tunnel junctions are presented. Self-assembled monolayers form the insulating tunnel barrier, I. The YBa 2 Cu 3 O 7 features in the tunneling conductance match those of low-leakage ab-oriented YBa 2 Cu 3 O 7 ͞Pb junctions. Results show that the zero-bias conductance peak is an Andreev bound state (ABS) of a d-wave order parameter. In zero magnetic field, the ABS splits below ϳ7 K, consistent with the presence of a subdominant order parameter at the surface. An applied magnetic field induces further splitting that grows nonlinearly with increasing field.[S0031-9007 (97)03529-1] PACS numbers: 74.50. + r, 74.72.Bk
The Josephson current in the presence of a precessing spin between various types of superconductors is studied. It is shown that the Josephson current flowing between two spin-singlet pairing superconductors is not modulated by the precession of the spin. When both superconductors have equal-spin-triplet pairing state, the flowing Josephson current is modulated with twice of the Larmor frequency by the precessing spin. It was also found that up to the second tunneling matrix elements, no Josephson current can occur with only a direct exchange interaction between the localized spin and the conduction electrons, if the two superconductors have different spin-parity pairing states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.