An overview of some recent results on the geometry of partial differential
equations in application to integrable systems is given. Lagrangian and
Hamiltonian formalism both in the free case (on the space of infinite jets) and
with constraints (on a PDE) are discussed. Analogs of tangent and cotangent
bundles to a differential equation are introduced and the variational Schouten
bracket is defined. General theoretical constructions are illustrated by a
series of examples.Comment: 54 pages; v2-v6 : minor correction
An efficient method to construct Hamiltonian structures for nonlinear evolution equations is described. It is based on the notions of variational Schouten bracket and ℓ * -covering. The latter serves the role of the cotangent bundle in the category of nonlinear evolution PDEs. We first consider two illustrative examples (the KdV equation and the Boussinesq system) and reconstruct for them the known Hamiltonian structures by our methods. For the coupled KdV-mKdV system, a new Hamiltonian structure is found and its uniqueness (in the class of polynomial (x, t)-independent structures) is proved. We also construct a nonlocal Hamiltonian structure for this system and prove its compatibility with the local one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.