In this article, we present the restricted numerical for the Laplacian matrix of a directed graph (digraph). We motivate our interest in the restricted numerical range by its close connection to the algebraic connectivity of a digraph. Moreover, we show that the restricted numerical range can be used to characterize digraphs, some of which are not determined by their Laplacian spectrum. Finally, we identify a new class of digraphs that are characterized by having a real restricted numerical range.
We prove that for every semigroup of Schwarz maps on the von Neumann algebra of all bounded linear operators on a Hilbert space which has a subinvariant faithful normal state there exists an associated semigroup of contractions on the space of Hilbert-Schmidt operators of the Hilbert space. Moreover, we show that if the original semigroup is weak * continuous then the associated semigroup is strongly continuous. We introduce the notion of the extended generator of a semigroup on the bounded operators of a Hilbert space with respect to an orthonormal basis of the Hilbert space. We describe the form of the generator of a quantum Markov semigroup on the von Neumann algebra of all bounded linear operators on a Hilbert space which has an invariant faithful normal state under the assumption that the generator of the associated semigroup has compact resolvent, or under the assumption that the generator of the minimal unitary dilation of the associated semigroup of contractions is compact.
In recent years, digraph induced generators of quantum dynamical semigroups have been introduced and studied, particularly in the context of unique relaxation and invariance. In this article we define the class of pair block diagonal generators, which allows for additional interaction coefficients but preserves the main structural properties. Namely, when the basis of the underlying Hilbert space is given by the eigenbasis of the Hamiltonian (for example the generic semigroups), then the action of the semigroup leaves invariant the diagonal and off-diagonal matrix spaces. In this case, we explicitly compute all invariant states of the semigroup.In order to define this class we provide a characterization of when the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation defines a proper generator when arbitrary Lindblad operators are allowed (in particular, they do not need to be traceless as demanded by the GKSL Theorem). Moreover, we consider the converse construction to show that every generator naturally gives rise to a digraph, and that under certain assumptions the properties of this digraph can be exploited to gain knowledge of both the number and the structure of the invariant states of the corresponding semigroup. 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.