In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.
Protein–DNA interactions are key to the functionality and stability of the genome. Identification and mapping of protein–DNA interaction interfaces and sites is crucial for understanding DNA-dependent processes. Here, we present a workflow that allows mass spectrometric (MS) identification of proteins in direct contact with DNA in reconstituted and native chromatin after cross-linking by ultraviolet (UV) light. Our approach enables the determination of contact interfaces at amino-acid level. With the example of chromatin-associated protein SCML2 we show that our technique allows differentiation of nucleosome-binding interfaces in distinct states. By UV cross-linking of isolated nuclei we determined the cross-linking sites of several factors including chromatin-modifying enzymes, demonstrating that our workflow is not restricted to reconstituted materials. As our approach can distinguish between protein–RNA and DNA interactions in one single experiment, we project that it will be possible to obtain insights into chromatin and its regulation in the future.
Dnmt2 methylates cytosine at position 38 of tRNAAsp in a variety of eukaryotic organisms. A correlation between the presence of the hypermodified nucleoside queuosine (Q) at position 34 of tRNAAsp and the Dnmt2 dependent C38 methylation was recently found in vivo for S. pombe and D. discoideum. We demonstrate a direct effect of the Q-modification on the methyltransferase catalytic efficiency in vitro, as Vmax/K0.5 of purified S. pombe Dnmt2 shows an increase for in vitro transcribed tRNAAsp containing Q34 to 6.27 ∗ 10–3 s−1 µM−1 compared to 1.51 ∗ 10–3 s−1 µM−1 for the unmodified substrate. Q34tRNAAsp exhibits an only slightly increased affinity for Dnmt2 in comparison to unmodified G34tRNA. In order to get insight into the structural basis for the Q-dependency, the crystal structure of S. pombe Dnmt2 was determined at 1.7 Å resolution. It closely resembles the known structures of human and E. histolytica Dnmt2, and contains the entire active site loop. The interaction with tRNA was analyzed by means of mass-spectrometry using UV cross-linked Dnmt2-tRNA complex. These cross-link data and computational docking of Dnmt2 and tRNAAsp reveal Q34 positioned adjacent to the S-adenosylmethionine occupying the active site, suggesting that the observed increase of Dnmt2 catalytic efficiency by queuine originates from optimal positioning of the substrate molecules and residues relevant for methyl transfer.
The mechanisms by which viruses hijack their host's genetic machinery are of enormous current interest. One mechanism is adenosine diphosphate (ADP) ribosylation, where ADP-ribosyltransferases (ARTs) transfer an ADP-ribose fragment from the ubiquitous coenzyme nicotinamide adenine dinucleotide (NAD) to acceptor proteins. When bacteriophage T4 infects Escherichia coli, three different ARTs reprogram the host's transcriptional and translational apparatus. Recently, NAD was identified as a 5'-modification of cellular RNA molecules in bacteria and higher organisms. Here, we report that bacteriophage T4 ARTs accept not only NAD, but also NAD-RNA as substrate, thereby covalently linking entire RNA chains to acceptor proteins in an "RNAylation" reaction. One of these ARTs, ModB, efficiently RNAylates its host protein target, ribosomal protein S1, at arginine residues and strongly prefers NAD-RNA over NAD. Mutation of a single arginine at position 139 abolishes ADP-ribosylation and RNAylation. Overexpression of mammalian ADP-ribosylarginine hydrolase 1 (ARH1), which cleaves arginine-phosphoribose bonds, shows a decelerated lysis of E. coli when infected with T4. Our findings not only challenge the established views of the phage replication cycle, but also reveal a distinct biological role of NAD-RNA, namely activation of the RNA for enzymatic transfer. Our work exemplifies the first direct connection between RNA modification and post-translational protein modification. As ARTs play important roles in different viral infections, as well as in antiviral defence by the host, RNAylation may have far-reaching implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.