Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures.
Ribonucleoproteins (RNPs) are key regulators of cellular function. We established an efficient approach that combines segmental isotope labeling of RNA with photo-crosslinking and tandem mass spectrometry to localize protein-RNA interactions simultaneously at amino acid and nucleotide resolution. The approach was tested on Polypyrimidine Tract Binding Protein 1 and U1 small nuclear RNP and the results support integrative atomic-scale structural modeling thus providing mechanistic insights into RNP regulated processes.
In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.
The general stress response in Alphaproteobacteria was recently described to depend on the alternative sigma factor EcfG , whose activity is regulated by its anti-sigma factor NepR. The response regulator PhyR, in turn, regulates NepR activity in a partner-switching mechanism according to which phosphorylation of PhyR triggers sequestration of NepR by the sigma factor-like effector domain of PhyR. Although genes encoding predicted histidine kinases can often be found associated with phyR, little is known about their role in modulation of PhyR phosphorylation status. We demonstrate here that the PhyR-NepREcfG cascade is important for multiple stress resistance and competitiveness in the phyllosphere in a naturally abundant plant epiphyte, Sphingomonas sp. strain Fr1, and provide evidence that the partner switching mechanism is conserved. We furthermore identify a gene, designated phyP, encoding a predicted histidine kinase at the phyR locus as essential. Genetic epistasis experiments suggest that PhyP acts upstream of PhyR, keeping PhyR in an unphosphorylated, inactive state in nonstress conditions, strictly depending on the predicted phosphorylatable site of PhyP, His-341. In vitro experiments show that Escherichia coli inner membrane fractions containing PhyP disrupt the PhyR-P/NepR complex. Together with the fact that PhyP lacks an obvious ATPase domain, these results are in agreement with PhyP functioning as a phosphatase of PhyR, rather than a kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.