Abstract. For the hyperbolic system of quasilinear first-order partial differential equations, linearizable by hodograph transformation, the conservation laws are used to solve the Cauchy problem. The equivalence of the initial problem for quasilinear system and the problem for conservation laws system permits to construct the characteristic lines in domains, where Jacobian of hodograph transformations is equal to zero. Moreover, the conservation laws give all solutions of the linearized system. Some examples from the gas dynamics and theory of plasticity are considered.
We consider the differential equation that Zernike proposed to classify aberrations of wavefronts in a circular pupil, as if it were a classical Hamiltonian with a non-standard potential. The trajectories turn out to be closed ellipses. We show that this is due to the existence of higher-order invariants that close into a cubic Higgs algebra. The Zernike classical system thus belongs to the class of superintegrable systems. Its Hamilton-Jacobi action separates in three vertical projections of polar coordinates of a sphere, polar and equidistant coordinates on half-hyperboloids, and also in elliptic coordinates on the sphere.
We consider the differential equation that Zernike proposed to classify aberrations of wavefronts in a circular pupil, whose value at the boundary can be nonzero. On this account the quantum Zernike system, where that differential equation is seen as a Schrödinger equation with a potential, is special in that it has a potential and boundary condition that are not standard in quantum mechanics. We project the disk on a half-sphere and there we find that, in addition to polar coordinates, this system separates in two additional coordinate systems (non-orthogonal on the pupil disk), which lead to Schrödinger-type equations with Pöschl-Teller potentials, whose eigen-solutions involve Legendre, Gegenbauer and Jacobi polynomials. This provides new expressions for separated polynomial solutions of the original Zernike system that are real. The operators which provide the separation constants are found to participate in a superintegrable cubic Higgs algebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.