Abstract. For the hyperbolic system of quasilinear first-order partial differential equations, linearizable by hodograph transformation, the conservation laws are used to solve the Cauchy problem. The equivalence of the initial problem for quasilinear system and the problem for conservation laws system permits to construct the characteristic lines in domains, where Jacobian of hodograph transformations is equal to zero. Moreover, the conservation laws give all solutions of the linearized system. Some examples from the gas dynamics and theory of plasticity are considered.
Symmetry theory is of fundamental importance in studying systems of partial differential equations. At present algebras of classical infinitesimal symmetry transformations are known for many equations of continuum mechanics [1, 2, 4]. Methods foi finding these algebras go back to S. Lie's works written about 100 years ago. Ir particular, knowledge of symmetry algebras makes it possible to construct effectively wide classes of exact solutions for equations under consideration and via Noether's theorem to find conservation laws for Euler–Lagrange equations. The natural development of Lie's theory is the theory of “higher” symmetries and conservation laws [5].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.