A novel method for supervisory control of multilink manipulators mounted on underwater vehicles is considered. This method is designed to significantly increase the level of automation of manipulative operations, by the building of motion trajectories for a manipulator working tool along the surfaces of work objects on the basis of target indications given by the operator. This is achieved as follows: The operator targets the camera (with changeable spatial orientation of optical axis) mounted on the vehicle at the work object, and uses it to set one or more working point on the selected object. The geometric shape of the object in the work area is determined using clouds of points obtained from the technical vision system. Depending on the manipulative task set, the spatial motion trajectories and the orientation of the manipulator working tool are automatically set using the spatial coordinates of these points lying on the work object surfaces. The designed method was implemented in the C++ programming language. A graphical interface has also been created that provides rapid testing of the accuracy of overlaying the planned trajectories on the mathematically described surface of a work object. Supervisory control of an underwater manipulator was successfully simulated in the V-REP environment.
The article considers the issues of development of a smart system for supporting activities of ROV operators and its practical implementation for the efficient operation a ROV Comanche 18 that is based on the R/V Akademik M.A. Lavrentiev. The system uses algorithms that provide coordinated movements of the ROV and its depressor unit. These algorithms are designed for ROVs to make synchronous, accurate, and accident-free movements along long-distance routes even when launched from a support vessel without dynamic positioning (DP). For this, the operator receives real-time visual recommendations and warnings generated on the basis of the expert evaluation of information coming from various sensors and positioning systems. The ability to plan routes of the ROV and its mothership, inputting target points, saving maps, tracks, and locations of the detected underwater objects are also implemented in the designed system. The article presents the results of successful tests carried out during a deep-sea research expedition of the A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS in the Bering Sea and Pacific Ocean. The created smart support system for ROV operators significantly extends the range of capabilities of ROVs performing many unique underwater operations, while significantly reducing their operating time.
The report describes the new supervisory control method for a multi-link manipulator mounted on an underwater vehicle, providing visual control of manipulation operations. The proposed method allows to build complex spatial movement trajectories of a multi-link manipulator working tool along a work object surface, using data obtained from onboard multibeam sonars or technical vision systems. Target designations of the operator determine the trajectory type, its position and orientation in a work area. To form target designations and visual observation of manipulator working tool movements along a given trajectory, a TV camera is used that changes its optical axis spatial orientation. The developed method is implemented in the C++ programming language, as well as numerical simulation of a multi-link underwater manipulator supervisory control in the virtual V-REP environment. To visualize the method, the graphical shell is written using "OpenGL Core".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.