The growth in the volume of modern construction and the manufacture of reinforced concrete structures (RCSs) presents the goal of reducing the cost of building materials without compromising structures and opens questions about the use of environmentally friendly natural raw materials as a local or full replacement of traditional mineral components. This can also solve the actual problem of disposal of unclaimed agricultural waste, the features of which may be of interest to the construction industry. This research aimed to analyze the influence of preparation factors on concrete features with partial substitution of coarse aggregate (CA) with rubber tree (RT) seed shells and to determine the optimal composition that can make it possible to attain concrete with improved strength features. CA was replaced by volume with RT seed shells in an amount from 2% to 16% in 2% increments. Scanning electronic microscopy was employed to investigate the structure of the obtained concrete examples. The maximum increase in strength features was observed when replacing coarse filler with 4% RT seed shell by volume and amounted to, for compressive and axial compressive strength (CS) and tensile and axial tensile strength (TS) in twisting, 6% and 8%, respectively. The decrease in strain features under axial compression and under axial tension was 6% and 5%, respectively. The modulus of elasticity increased to 7%. The microstructure of hardened concrete samples with partial replacement of CA with RT seed shells in the amount of 2%, 4% and 6% was the densest with the least amount of pores and microcracks in comparison with the structure of the sample of the control composition, as well as samples with the replacement of CA with RT seed shells in an amount of more than 6%. The expedient effective replacement of CA with RT shells led to a reduction in battered stone of up to 8%.
According to the sustainable development concept, it is necessary to solve the issue of replacing fiber from synthetic materials with natural, environmentally friendly, and cheap-to-manufacture renewable resources and agricultural waste. Concrete is the primary material for which fibers are intended. Therefore, the use of vegetable waste in concrete is an essential and urgent task. Coconut fiber has attracted attention in this matter, which is a by-product of the processing of coconuts and makes it relevant. This work aims to investigate the experimental base for the strength properties of dispersed fiber-reinforced concrete with coconut fibers, as well as the influence of the fiber percentage on the mechanical, physical, and deformation characteristics. The samples were made of concrete with a compressive strength at 28 days from 40 to 50 MPa. The main mechanical characteristics such as strength in compression (cubic and prismatic) and tension (axial and bending), as well as the material’s compressive and tensile strains, were investigated. The percentage of reinforcement with coconut fibers was taken in the range of 0% to 2.5% with an increment of 0.25 wt.%. Tests were carried out 28 days after the manufacture. The microstructure of the resulting compositions was investigating using the electron microscopy method. The most rational percentage of coconut fibers was obtained at 1.75%. The increase in mechanical indicators was 24% and 26% for compression and axial compression, respectively, and 42% and 43% for tensile bending and axial tension, respectively. The ultimate strains in compression were raised by 46% and in tension by 51%. The elastic modulus was increased by 16%.
In the theory of reinforced concrete, the issue on strength of the oblique beam sections is more complicated than that on the standard sections, since it depends on many factors. The change of at least one of them leads to a significant change in the carrying capacity and in the structural damage pattern. This is due to the fact that at the operating level of the load, all conventional reinforced concrete structures work with cracks, which must be considered in the calculation. However, in the existing regulatory documents and public sources, this issue is not specified. This paper considers the effect of initial cracks on the strength of oblique cross sections of the reinforced concrete beams strengthened with carbon fiber. The experimental studies results obtained through the transverse force testing of forty-two prototypes made of heavy concrete of B30 design grade are presented. The test samples had initial oblique cracks of 0.6-0.9 mm width and were reinforced with three composite U stirrups from the fabric based on unidirectional carbon fibers in the shear span. Initial cracks in the beams were formed at three values of the shear span – 1.5h0, 2h0 and 2.5h0. The test data show the impact of initial cracks on the efficiency of composite reinforcement of oblique cross sections of the prototypes at various values of shear spans.
The partial replacement of the mineral components of concrete with natural renewable analogues in full possession of the performance characteristics of the final material, allows not only the concrete-production process to be made more environmentally friendly and inexpensive, but also to solve an important task for the agricultural industry, which is that associated with waste disposal. The scientific novelty of the work is in the obtaining of new concrete compositions by the partial replacement of coarse aggregate with a natural analogue in the form of a walnut shell, which has the maximum ratio of the strength of the composite to its density, as well as in identifying new dependencies of strength and density and their ratio on the amount of replacement of mineral coarse-aggregate walnut shell. The main goal of this article was to analyze the effect of composition factors on characteristics of concrete with partial replacement of large aggregates with walnut shells and to search for the optimal compound that would make it possible to obtain concrete with a minimum decrease in strength characteristics with a maximum decrease in concrete density. Cubes and prism laboratory samples were made from concrete of normal density with the replacement of coarse aggregate by 5, 10, 15, 20, 25 and 30%, by volume. The main mechanical properties, such as density, strength (compressive, tensile, tensile strength in bending) of the concrete samples were studied. The investigation used standard methods and scanning electron microscopy. An increase into strength characteristics up to 3.5%, as well as the maximum ratio of strength to density of concrete, was observed at a walnut-shell dosage of 5%. Effective partial replacement of coarse aggregate with walnut shells leads to a reduction in the consumption of crushed stone by up to 10% and a decrease in the mass of concrete by up to 6%.
The fibers used in concrete are mainly materials that require additional production, which negatively affects their cost and environmental friendliness. Therefore, the issue of the effectiveness of the use of natural fibers, the extraction of which does not require mechanized production, becomes relevant. One of these materials is sisal fiber. The main purpose of this work was to study the effect of adding sisal fibers on the structure and properties of environmentally friendly concretes with improved characteristics. The tests were carried out in strict accordance with technological recommendations and normative and technical documents. Laboratory samples were made in the form of cubes and prisms of concrete with a compressive strength of 48 MPa and sisal fiber content of 0.25%, 0.5%, 0.75%, 1.0%, 1.25% and 1.5%. The tests were carried out at a concrete age of 15 days. The compressive strength and tensile strength of concrete samples were studied using the method of optical microscopy. The optimal content of fiber reinforcement with sisal fiber was determined as equal to 1%. The increases in the strength characteristics of the obtained fiber-reinforced concrete samples at the optimal dosage of sisal fiber in an amount of 1% by weight of cement were 22% for compressive strength, 27% for axial compressive strength, 33% for tensile strength in bending and 29% for axial strength stretching. The increases in deformation characteristics were 25% for strains in axial compression, 42% for strains in axial tension and 15% for the elastic modulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.