В данной работе доказано, что каждое локально минимальное дерево в евклидовом пространстве можно "стабилизировать", т.е. его можно превратить в кратчайшее, добавляя новые граничные вершины, но не меняя исходное дерево как подмножество пространства. Этот результат полезен при построении примеров кратчайших деревьев. Библиография: 2 названия.
We have selected problems that may not yet be well known, but have the potential to push the research in interesting directions. In particular, we state problems that do not require specific knowledge outside the standard circle of ideas in discrete geometry. Despite the relatively simple statements, these problems are related to current research and their solutions are likely to require new ideas and approaches. We have chosen problems from different fields to make this short paper attractive to a wide range of specialists.The article is published in the author’s wording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.