Source/description: Ubiquitin-associated protein 2 (UBAP2) is a novel gene first isolated based on its expression in the human adrenal gland. 1 The full-length protein encoded by this gene contains a ubiquitin-associated domain, a motif found in several proteins having connections to ubiquitin and the ubiquitination pathway. 1 In birds, UBAP2 is represented in two copies located on the Z and W chromosomes. 2 In the recent chicken genome sequence assembly, the GGAZ and especially the GGAW sequences were poorly represented and assembled, so additional evidence for the location of Z-and W-linked loci should help to address this situation. Here, we report the cytogenetic assignment of large-insert clones for the chicken UBAP2 genes.
<b><i>Introduction:</i></b> Left ventricular non-compaction (LVNC) represents a genetically heterogeneous cardiomyopathy which occurs in both children and adults. Its genetic spectrum overlaps with other types of cardiomyopathy. However, LVNC phenotypes in different age groups can have distinct genetic aetiologies. The aim of the study was to decipher the genetic spectrum of LVNC presented in childhood. <b><i>Patient Group and Methods:</i></b> Twenty patients under the age of 18 years diagnosed with LVNC were enrolled in the study. Target sequencing and whole-exome sequencing were performed using a panel of 108 cardiomyopathy-associated genes. Pathogenic, likely pathogenic, and variants of unknown significance found in genes highly expressed in cardiomyocytes were considered as variants of interest for further analysis. <b><i>Results:</i></b> The median age at presentation was 8.0 (0.1–17) years, with 6 patients presenting before 1 year of age. Twelve (60%) patients demonstrated reduced ejection fraction. Right ventricular (RV) dilation was registered in 6 (30%), often in combination with reduced RV contractility (25%). Almost half (45%) of the patients demonstrated biventricular involvement already at disease presentation. For pathogenic and likely pathogenic variants, the positive genotyping rate was 45%, and these variants were found mainly in non-contractile structural sarcomeric genes (<i>ACTN2</i>, <i>MYPN</i>, and <i>TTN</i>) or in metabolic and signal transduction genes (<i>BRAF</i> and <i>TAZ</i>). Likely pathogenic <i>TAZ</i> variants were detected in all 5 patients suspected of having Barth syndrome. No pathogenic or likely pathogenic variants were found in genes encoding for sarcomeric contractile proteins, but variants of unknown significance were detected in 3 out of 20 patients (<i>MYH6</i>, <i>MYH7</i>, and <i>MYLK2</i>). In 4 patients, variants of unknown significance in ion-channel genes were detected. <b><i>Conclusion:</i></b> We detected a low burden of contractile sarcomeric variants in LVNC patients presenting below the age of 18 years, with the major number of variants residing in non-contractile structural sarcomeric genes. The identification of the variants in ion-channel and related genes not previously associated with LVNC in paediatric patients requires further examination of their functional role.
Background FLNC is one of the few genes associated with all types of cardiomyopathies, but it also underlies neuromuscular phenotype. The combination of concomitant neuromuscular and cardiac involvement is not often observed in filaminopathies and the impact of this on the disease prognosis has hitherto not been analyzed. Results Here we provide a detailed clinical, genetic, and structural prediction analysis of distinct FLNC-associated phenotypes based on twelve pediatric cases. They include early-onset restrictive cardiomyopathy (RCM) in association with congenital myopathy. In all patients the initial diagnosis was established during the first year of life and in five out of twelve (41.7%) patients the first symptoms were observed at birth. RCM was present in all patients, often in combination with septal defects. No ventricular arrhythmias were noted in any of the patients presented here. Myopathy was confirmed by neurological examination, electromyography, and morphological studies. Arthrogryposes was diagnosed in six patients and remained clinically meaningful with increasing age in three of them. One patient underwent successful heart transplantation at the age of 18 years and two patients are currently included in the waiting list for heart transplantation. Two died due to congestive heart failure. One patient had ICD instally as primary prevention of SCD. In ten out of twelve patients the disease was associated with missense variants and only in two cases loss of function variants were detected. In half of the described cases, an amino acid substitution A1186V, altering the structure of IgFLNc10, was found. Conclusions The present description of twelve cases of early-onset restrictive cardiomyopathy with congenital myopathy and FLNC mutation, underlines a distinct unique phenotype that can be suggested as a separate clinical form of filaminopathies. Amino acid substitution A1186V, which was observed in half of the cases, defines a mutational hotspot for the reported combination of myopathy and cardiomyopathy. Several independent molecular mechanisms of FLNC mutations linked to filamin structure and function can explain the broad spectrum of FLNC-associated phenotypes. Early disease presentation and unfavorable prognosis of heart failure demanding heart transplantation make awareness of this clinical form of filaminopathy of great clinical importance.
RBM20 (RNA-binding motif protein 20) is a splicing factor targeting multiple cardiac genes, and its mutations cause cardiomyopathies. Originally, RBM20 mutations were discovered to cause the development of dilated cardiomyopathy by erroneous splicing of the gene TTN (titin). Titin is a giant protein found in a structure of the sarcomere that functions as a molecular spring and provides a passive stiffness to the cardiomyocyte. Later, RBM20 mutations were also described in association with arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Here, we present a clinical case of a rare arrhythmogenic phenotype and no structural cardiac abnormalities associated with a RBM20 genetic variant of uncertain significance.
Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary diseases, and it is associated with fatal complications. The clinical heterogeneity of HCM requires risk prediction models to identify patients at a high risk of adverse events. Most HCM cases are caused by mutations in genes encoding sarcomere proteins. However, HCM is associated with rare genetic variants with limited data about its clinical course and prognosis, and existing risk prediction models are not validated for such patients’ cohorts. TRIM63 is one of the rare genes recently described as a cause of HCM with autosomal-recessive inheritance. Herein, we present two cases of HCM associated with TRIM63-compound heterozygous variants in young male sportsmen. They demonstrated progressively marked hypertrophy, advanced diastolic dysfunction, a significant degree of fibrosis detected by magnetic resonance imaging, and clear indications for implantable cardioverter-defibrillator. One of the cases includes the first description of TRIM63-HCM with extreme hypertrophy. The presented cases are discussed in light of molecular consequences that might underlie cardiac and muscle phenotype in patients with mutations of TRIM63, the master regulator of striated muscle mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.