Presynaptic CaV2.2 channels control calcium entry that triggers neurotransmitter release at both central and peripheral synapses. The Cacna1b gene encodes the α1-pore forming subunit of CaV2.2 channels. Distinct subsets of splice variants of CaV2.2 derived from cell-specific alternative splicing of the Cacna1b pre-mRNA are expressed in specific subpopulations of neurons. Four cell-specific sites of alternative splicing in Cacna1b that alter CaV2.2 channel function have been described in detail: three cassette exons (e18a, e24a, and e31a) and a pair of mutually exclusive exons (e37a/e37b). Cacna1b mRNAs containing e37a are highly enriched in a subpopulation of nociceptors where they influence nociception and morphine analgesia. E37a-Cacna1b mRNAs are also expressed in brain, but their cell-specific expression in this part of the nervous system, their functional consequences in central synapses and their role on complex behavior have not been studied. In this report, we show that e37a-Cacna1b mRNAs are expressed in excitatory projection neurons where CaV2.2 channels are known to influence transmitter release at excitatory inputs from entorhinal cortex (EC) to dentate gyrus (DG). By comparing behaviors of WT mice to those that only express e37b-CaV2.2 channels, we found evidence that e37a-CaV2.2 enhances behavioral responses to aversive stimuli. Our results suggest that alternative splicing of Cacna1b e37a influences excitatory transmitter release and couples to complex behaviors.
Presynaptic Ca V 2.2 (N‐type) channels are fundamental for transmitter release across the nervous system. The gene encoding Ca V 2.2 channels, Cacna1b , contains alternatively spliced exons that result in functionally distinct splice variants (e18a, e24a, e31a, and 37a/37b). Alternative splicing of the cassette exon 18a generates two mRNA transcripts (+e18a‐ Cacna1b and ∆e18a‐ Cacna1b ). In this study, using novel mouse genetic models and in situ hybridization (BaseScope™), we confirmed that +e18a‐ Cacna1b splice variants are expressed in monoaminergic regions of the midbrain. We expanded these studies and identified +e18a‐ Cacna1b mRNA in deep cerebellar cells and spinal cord motor neurons. Furthermore, we determined that +e18a ‐Cacna1b is enriched in cholecystokinin‐expressing interneurons. Our results provide key information to understand cell‐specific functions of Ca V 2.2 channels.
N-type (CaV2.2) calcium channels are key for action potential-evoked transmitter release in the peripheral and central nervous system. Previous studies have highlighted the functional relevance of N-type calcium channels at both the peripheral and central level. In the periphery, N-type calcium channels regulate nociceptive and sympathetic responses. At the central level, N-type calcium channels have been linked to aggression, hyperlocomotion, and anxiety. Among the areas of the brain that are involved in anxiety are the basolateral amygdala, medial prefrontal cortex, and ventral hippocampus. These three areas share similar characteristics in their neuronal circuitry, where pyramidal projection neurons are under the inhibitory control of a wide array of interneurons including those that express the peptide cholecystokinin. This type of interneuron is well-known to rely on N-type calcium channels to release GABA in the hippocampus, however, whether these channels control GABA release from cholecystokinin-expressing interneurons in the basolateral amygdala and medial prefrontal cortex is not known. Here, using mouse models to genetically label cholecystokinin-expressing interneurons and electrophysiology, we found that in the basolateral amygdala, N-type calcium channels control ~50% of GABA release from these neurons onto pyramidal cells. By contrast, in the medial prefrontal cortex N-type calcium channels are functionally absent in synapses of cholecystokinin-expressing interneurons, but control ~40% of GABA release from other types of interneurons. Our findings provide insights into the precise localization of N-type calcium channels in interneurons of brain areas related to anxiety.
Presynaptic CaV2.2 (N-type) channels are fundamental for transmitter release across the nervous system. The gene encoding CaV2.2 channels, Cacna1b, contains alternatively spliced exons that originate functionally distinct splice variants (e18a, e24a, e31a and 37a/37b). Alternative splicing of the cassette exon 18a generates two mRNA transcripts (+e18a-Cacna1b and De18a-Cacna1b). In this study, using novel mouse genetic models and in situ hybridization (BaseScope TM ), we confirmed that +e18a-Cacna1b splice variants are expressed in monoaminergic regions of midbrain. We expanded these studies and identified +e18a-Cacna1b mRNA in deep cerebellar cells and spinal cord motor neurons. Furthermore, we determined that +e18a-Cacna1b is enriched in cholecystokinin expressing interneurons. Our results provide key information to understand cell-specific functions of CaV2.2 channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.