Although impurity doping of nanocrystals is essential in controlling their physical properties for various applications, the doping mechanism of ultrasmall, colloidal II–VI semiconductor nanocrystals, corresponding to the initial stages of growth, is not yet understood. In this study the concentrations of Mn2+ ions in the core, on the surface, and as an agglomerated separate phase in 2.9 nm cubic ZnS nanocrystals, prepared by a surfactant-assisted liquid–liquid synthesis within 20 to 20 000 ppm nominal impurity concentration range, have been determined by quantitative multifrequency electron paramagnetic resonance. The unexpected strong decrease in the core doping efficiency with the nominal concentration increase, in contrast to the small variation of the doping efficiency for the surface-bound Mn2+ ions, and the sizable core doping efficiency observed for 1.8 nm nanocrystals were explained with the extended lattice defect assisted mechanism of incorporation. According to this mechanism, which is not size or shape limited, being active from the initial growth stages, the incorporation of Mn2+ ions takes place at surface sites with high binding energy on dislocation steps formed by the emerging stacking defects. High resolution transmission electron microscopy confirms the presence of such stacking defects in a large proportion of the investigated cubic ZnS nanocrystals, ensuring the operation of the proposed doping mechanism.
The synthesis of semiconductor nanocrystals with controlled doping is highly challenging, as often a significant part of the doping ions are found segregated at nanocrystals surface, even forming secondary phases, rather than incorporated in the core. We have investigated the dopant distribution dynamics under slight changes in the preparation procedure of nanocrystalline ZnO doped with manganese in low concentration by electron paramagnetic resonance spectroscopy, paying attention to the formation of transient secondary phases and their transformation into doped ZnO. The acidification of the starting solution in the co-precipitation synthesis from nitrate precursors lead to the decrease of the Mn 2+ ions concentration in the core of the ZnO nanocrystals and their accumulation in minority phases, until ~79% of the Mn 2+ ions were localized in a thin disordered shell of zinc hydroxynitrate (ZHN). A lower synthesis temperature resulted in polycrystalline Mn-doped ZHN. Under isochronal annealing up to 250 °C the bulk ZHN and the minority phases from the ZnO samples decomposed into ZnO. The Mn 2+ ions distribution in the annealed nanocrystals was significantly altered, varying from a uniform volume distribution to a preferential localization in the outer layers of the nanocrystals. Our results provide a synthesis strategy for tailoring the dopant distribution in ZnO nanocrystals for applications ranging from surface based to ones involving core properties.
In this paper, we investigate the origin of point defects revealed by electron spin resonance (ESR) and photoluminescence (PL) emission in correlation with the photocatalytic activity of ZnO nanocrystals subjected to thermal annealing at various temperatures. Two ESR signals at g ∼ 1.96 and ∼2.003 were consistently observed in all annealed ZnO samples. However, their relative intensities have changed, indicating that the point defect densities were influenced by the annealing temperature. Interestingly, when doping nanoZnO with Cr 3+ , the Q-band ESR measurements at T = 100 K did show that the g ∼ 1.96 signal was completely passivated, suggesting that the origin of the signal lies in the electrons located near the conduction band, i.e. at a shallow-donor level. The intensity of the g ∼ 2.003 signal decreased by rising the annealing temperature, and this is attributed to the depopulation of zinc interstitials through the thermally induced migration process and/or recombination with the zinc vacancies. The green PL emission line at ∼520 nm, which is dominant in the 700 • C annealed ZnO sample, shows a correlation with the ESR signal at g ∼ 1.96, whose origin is attributed to the radiative transition of the electron from the shallow donor level to the singly ionized zinc vacancy. Furthermore, the high density of the shallow donor electron states was found to be primarily responsible for the high photocatalytic activity in the degradation of methylene blue.
Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm−2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.