The marine microalgae Tetraselmis striata was cultivated in drilling waters with different salinities. Growth substrate optimization was performed while the effects of different pH, temperature, photoperiod and CO2 flow rate on biomass productivity and its composition were studied. Results showed that the strain grew better in 2.8% drilling waters employing the fertilizer Nutri-Leaf together with ΝaHCO3. A pH value of 8 resulted in high biomass productivity (79.8 mg L−1 d−1) and biomass composition (proteins 51.2% d.w., carbohydrates 14.6% d.w., lipids 27.8% d.w. and total chlorophylls 5.1% d.w.). The optimum cultivation temperature was found to be 25 ± 1 °C which further enhanced biomass productivity (93.7 mg L−1 d−1) and composition (proteins 38.7% d.w., carbohydrates 20.4% d.w., lipids 30.2% d.w., total chlorophylls 5.1% d.w.). Photoperiod experiments showed that continuous illumination was essential for biomass production. A 10 mL min−1 flow rate of CO2 lead to biomass productivity of 87.5 mg L−1 d−1 and high intracellular content (proteins 44.6% d.w., carbohydrates 10.3% d.w., lipids 27.3% d.w., total chlorophylls 5.2% d.w.). Applying the optimum growth conditions, the produced biomass presented high protein content with adequate amino acids and high percentages of eicosapentaenoic acid (EPA), indicating its suitability for incorporation into conventional fish feeds. In addition, this study analyzed how functional parameters may influence the uptake of nutrients by Tetraselmis.
Yarrowia lipolytica, which is model oleaginous yeast with high industrial interest, was cultivated on fatty substrates. Data concerning fatty acid composition of both substrate and yeast lipids and comparisons of the experimental data with model predictions presented in “Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: Modelling and trials with Yarrowia lipolytica” (Vasiliadou et al., 2018) were provided. Furthermore, the total yeast lipids were fractionated into their main fractions, that is, phospholipids, glucolipids plus sphingolipids and neutral lipids, and the fatty acid composition of each lipid fraction was reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.