Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies to certain cellular macromolecules, such as the small nuclear ribonucleoprotein particles (snRNPs), which had been considered to be passive targets of the autoimmune response. SLE is also characterized by the increased expression of type I interferon (IFN), which appears to be associated with the development and severity of disease. Here, we show that specific, highly conserved RNA sequences within snRNPs can stimulate Toll-like receptors (TLRs) 7 and 8 as well as activate innate immune cells, such as plasmacytoid dendritic cells (pDCs), which respond by secreting high levels of type I IFN. SLE patient sera containing autoantibodies to snRNPs form immune complexes that are taken up through the Fc receptor γRII and efficiently stimulate pDCs to secrete type I IFNs. These results demonstrate that a prototype autoantigen, the snRNP, can directly stimulate innate immunity and suggest that autoantibodies against snRNP may initiate SLE by stimulating TLR7/8.
The TLRs 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. U-rich RNA sequences were recently discovered that stimulate human TLR7/8-mediated or murine TLR7-mediated immune effects. In this study we identified single-stranded RNA sequences containing defined sequence motifs that either preferentially activate human TLR8-mediated as opposed to TLR7- or TLR7/8-mediated immune responses. The identified TLR8 RNA motifs signal via TLR8 and fail to induce IFN-α from TLR7-expressing plasmacytoid dendritic cells but induce the secretion of Th1-like and proinflammatory cytokines from TLR8-expressing immune cells such as monocytes or myeloid dendritic cells. In contrast, RNA sequences containing the TLR7/8 motif signal via TLR7 and TLR8 and stimulate cytokine secretion from both TLR7- and TLR8-positive immunocytes. The TLR8-specific RNA sequences are able to trigger cytokine responses from human and bovine but not from mouse, rat, and porcine immune cells, suggesting that these species lack the capability to respond properly to TLR8 RNA ligands. In summary, we describe two classes of single-stranded TLR7/8 and TLR8 RNA agonists with diverse target cell and species specificities and immune response profiles.
Pronounced variability of transgene expression and transgene silencing are commonly observed among independent plant lines transformed with the same construct. Single-copy T-DNA lines harboring reporter genes of various kind and number under the control of a strong promoter were established in Arabidopsis thaliana for a comprehensive analysis of transgene expression. Characterization of 132 independent transgenic lines revealed no case of silencing as a result of site of T-DNA integration. Below a certain number of identical transgenes in the genome, gene copy number and expression were positively correlated. Expression was high, stable over all generations analyzed, and of a comparable level among independent lines harboring the same copy number of a particular transgene. Conversely, RNA silencing was triggered if the transcript level of a transgene surpassed a gene-specific threshold. Transcript level–mediated silencing effectively accounts for the pronounced transgene expression variability seen among transformants. It is proposed that the RNA sensing mechanism described is a genome surveillance system that eliminates RNA corresponding to excessively transcribed genes, including transgenes, and so plays an important role in genome defense
Summary Transgene expression was analysed in Arabidopsis T‐DNA transformants carrying defined numbers and arrangement of different reporter genes. All transgenes were placed under the control of the strong constitutive CaMV 35S promoter. High, stable transgene expression was observed in plants containing two copies of the β‐glucuronidase (GUS) gene, two or four copies of the green fluorescent protein (GFP) gene and two, four or six copies of the streptomycin phosphotransferase (SPT) gene. Thus, the mere presence of multiple promoter and/or transgene sequences did not result in gene silencing. In none of the cases analysed were tandem repeat arrangements of transgenes and/or inverted repeat (IR) T‐DNA structures sufficient to trigger silencing of the different reporter genes. Instead, post‐transcriptional gene silencing (PTGS) correlated with the copy number of the highly expressed transgenes. Twelve copies of the SPT and four copies of the GUS gene triggered silencing. Silencing is frequently associated with repetitive T‐DNA structures. We favour the idea that in many cases this may be attributed to the high transgene doses rather than the repeat arrangements themselves.
T-DNA flanking sequences were isolated from 112 Arabidopsis thaliana single-copy T-DNA lines and sequence mapped to the chromosomes. Even though two T-DNA insertions mapped to a heterochromatic domain located in the pericentromeric region of chromosome I, expression of reporter genes was detected in these transgenic lines. T-DNA insertion did not seem to be biased toward any of Arabidopsis' five chromosomes. The observed distribution of T-DNA copies in intergenic sequence versus gene sequence (i.e. 5'-upstream regions, coding sequences and 3'-downstream regions) appeared randomly. An evaluation of T-DNA insertion frequencies within gene sequence revealed that integration into 5'-upstream regions occurred more frequently than expected, whereas insertions in coding sequences (exons and introns) were found less frequently than expected based on random distribution predictions. In the majority of cases, single-copy T-DNA insertions were associated with small or large rearrangements such as deletions and/or duplications of target site sequences, deletions and/or duplications of T-DNA sequences, and gross chromosomal rearrangements such as translocations. The accuracy of integration was similarly high for both left- and right-border sequences. These results may be called upon when making detailed molecular analyses of transgenic plants or T-DNA induced mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.