Pronounced variability of transgene expression and transgene silencing are commonly observed among independent plant lines transformed with the same construct. Single-copy T-DNA lines harboring reporter genes of various kind and number under the control of a strong promoter were established in Arabidopsis thaliana for a comprehensive analysis of transgene expression. Characterization of 132 independent transgenic lines revealed no case of silencing as a result of site of T-DNA integration. Below a certain number of identical transgenes in the genome, gene copy number and expression were positively correlated. Expression was high, stable over all generations analyzed, and of a comparable level among independent lines harboring the same copy number of a particular transgene. Conversely, RNA silencing was triggered if the transcript level of a transgene surpassed a gene-specific threshold. Transcript level–mediated silencing effectively accounts for the pronounced transgene expression variability seen among transformants. It is proposed that the RNA sensing mechanism described is a genome surveillance system that eliminates RNA corresponding to excessively transcribed genes, including transgenes, and so plays an important role in genome defense
Thus, p-ANCAs in autoimmune liver diseases are directed against human TBB-5 cross-reacting with the bacterial protein FtsZ, probably reflecting an abnormal immune response to intestinal microorganisms in susceptible, possibly genetically predisposed individuals.
Summary
Transgene expression was analysed in Arabidopsis T‐DNA transformants carrying defined numbers and arrangement of different reporter genes. All transgenes were placed under the control of the strong constitutive CaMV 35S promoter. High, stable transgene expression was observed in plants containing two copies of the β‐glucuronidase (GUS) gene, two or four copies of the green fluorescent protein (GFP) gene and two, four or six copies of the streptomycin phosphotransferase (SPT) gene. Thus, the mere presence of multiple promoter and/or transgene sequences did not result in gene silencing. In none of the cases analysed were tandem repeat arrangements of transgenes and/or inverted repeat (IR) T‐DNA structures sufficient to trigger silencing of the different reporter genes. Instead, post‐transcriptional gene silencing (PTGS) correlated with the copy number of the highly expressed transgenes. Twelve copies of the SPT and four copies of the GUS gene triggered silencing. Silencing is frequently associated with repetitive T‐DNA structures. We favour the idea that in many cases this may be attributed to the high transgene doses rather than the repeat arrangements themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.