Emotional eating is commonly defined as the tendency to (over)eat in response to emotion.Insofar as it involves the (over)consumption of high-calorie palatable foods, emotional eating is a maladaptive behavior that can lead to eating disorders, and ultimately to metabolic disorders and obesity. Emotional eating is associated with eating disorder subtypes and with Accepted manuscript / Final version abnormalities in emotion processing at a behavioral level. However, not enough is known about the neural pathways involved in both emotion processing and food intake. In this review, we provide an overview of recent neuroimaging studies, highlighting the brain correlates between emotions and eating behavior that may be involved in emotional eating.Interaction between neural and neuro-endocrine pathways (HPA axis) may be involved. In addition to behavioral interventions, there is a need for a holistic approach encompassing both neural and physiological levels to prevent emotional eating. Based on recent imaging, this review indicates that more attention should be paid to prefrontal areas, the insular and orbitofrontal cortices, and reward pathways, in addition to regions that play a major role in both the cognitive control of emotions and eating behavior. Identifying these brain regions could allow for neuromodulation interventions, including neurofeedback training, which deserves further investigation.
Neurofeedback (NF) training is a promising preventive and therapeutic approach for brain and behavioral impairments, the dorsolateral prefrontal cortex (DL-PFC) being a relevant region of interest. Functional near-infrared spectroscopy (NIRS) has recently been applied in NF training. However, this approach is highly sensitive to extra-cerebral vascularization, which could bias measurements of cortical activity. Here, we examined the feasibility of a NF training targeting the DL-PFC and its specificity by assessing the impact of physiological confounds on NF success via short-channel offline correction under different signal filtering conditions. We also explored whether the individual mental strategies affect the NF success. Thirty volunteers participated in a single 15-trial NF session in which they had to increase the oxy-hemoglobin (HbO2) level of their bilateral DL-PFC. We found that 0.01–0.09 Hz band-pass filtering was more suited than the 0.01–0.2 Hz band-pass filter to highlight brain activation restricted to the NF channels in the DL-PFC. Retaining the 10 out of 15 best trials, we found that 18 participants (60%) managed to control their DL-PFC. This number dropped to 13 (43%) with short-channel correction. Half of the participants reported a positive subjective feeling of control, and the “cheering” strategy appeared to be more effective in men (p<0.05). Our results showed successful DL-PFC fNIRS-NF in a single session and highlighted the value of accounting for extra cortical signals, which can profoundly affect the success and specificity of NF training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.