Basic cellular processes such as electron transport in photosynthesis and respiration require the precise control of iron homeostasis. To mobilize iron, plants have evolved at least two different strategies. The nonproteinogenous amino acid nicotianamine which is synthesized from three molecules of S-adenosyl-l-methionine, is an essential component of both pathways. This compound is missing in the tomato mutant chloronerva, which exhibits severe defects in the regulation of iron metabolism. We report the purification and partial characterization of the nicotianamine synthase from barley roots as well as the cloning of two corresponding gene sequences. The function of the gene sequence has been verified by overexpression in Escherichia coli. Further confirmation comes from reduction of the nicotianamine content and the exhibition of a chloronerva-like phenotype due to the expression of heterologous antisense constructs in transgenic tobacco plants. The native enzyme with an apparent M r of < 105 000 probably represents a trimer of S-adenosyl-l-methionine-binding subunits. A comparison with the recently cloned chloronerva gene of tomato reveals striking sequence homology, providing support for the suggestion that the destruction of the nicotianamine synthase encoding gene is the molecular basis of the tomato mutation.Keywords: antisense constructs; chloronerva mutation; gene isolation; Hordeum vulgare; iron metabolism.Iron is essential for fundamental cellular processes such as electron transfer in photosynthesis, respiration, nitrogen fixation as well as DNA synthesis [1]. Excessive accumulation causes severe damage to cellular components due to the formation of highly reactive hydroxyl radicals by the Fenton reaction [2]. Thus, the precise control of iron homeostasis is a basic prerequisite for cellular function. According to WHO data the health of more than three billion people worldwide is affected by iron deficient diet. Crop plants with a higher iron content, for example in the endosperm of cereals, could contribute to the improvement of this situation. In soil iron is mainly found as stable Fe(III) compounds with low solubility at neutral pH [1,3]. Therefore, plants have evolved special mechanisms of iron acquisition, classified into two strategies [4]. Strategy I plants, including dicots and nongraminaceous monocots, facilitate iron uptake mainly by increased acidification of the rhizosphere due to enhanced proton extrusion and the reduction of Fe(III) to Fe(II) by an inducible plasma membrane-bound reductase. In contrast, graminaceous monocots (strategy II plants) release phytosiderophores of the mugineic acid family into the rhizosphere. These compounds act as chelators of ferric ions and are taken up by root cells as Fe(III)-phytosiderophore complexes.The nonproteinogenous amino acid nicotianamine (NA) is found in all multicellular plants [5] and is considered to be a key component for both strategies of iron acquisition (Fig.1). In strategy I plants NA might function as a chelator of iron in symplastic...
In the unicellular green algae Chlamydomonas reinhardtii, high-affinity uptake of iron (Fe) requires an Fe3+-chelate reductase and an Fe transporter. Neither of these proteins nor their corresponding genes have been isolated. We previously identified, by analysis of differentially expressed plasma membrane proteins, an approximately 150-kD protein whose synthesis was induced under conditions of Fe-deficient growth. Based on homology of internal peptide sequences to the multicopper oxidase hephaestin, this protein was proposed to be a ferroxidase. A nucleotide sequence to the full-length cDNA clone for this ferroxidase-like protein has been obtained. Analysis of the primary amino acid sequence revealed a putative transmembrane domain near the amino terminus of the protein and signature sequences for two multicopper oxidase I motifs and one multicopper oxidase II motif. The ferroxidase-like gene was transcribed under conditions of Fe deficiency. Consistent with the role of a copper (Cu)-containing protein in Fe homeostasis, growth of cells in Cu-depleted media eliminated high-affinity Fe uptake, and Cu-deficient cells that were grown in optimal Fe showed greatly reduced Fe accumulation compared with control, Cu-sufficient cells. Reapplication of Cu resulted in the recovery of Fe transport activity. Together, these results were consistent with the participation of a ferroxidase in high-affinity Fe uptake in C. reinhardtii.
The nicotianamine-deficient mutant chloronerva resembles phenotypically an Fe-deficient plant despite the high accumulation of Fe in the leaves, whereas it suffers from Cu deficiency in the shoot. Two-dimensional electrophoretic separation of proteins from root tips and leaves of wild-type Lycopersicon esculentum Mill. cv Bonner Beste and the mutant grown with and without Fe showed a number of consistent differences. In root tips of the Fe-deficient wild type and the Fe-sufficient as well as the Fe-deficient mutant, the expression of glyceraldehyde-3-phosphate dehydrogenase, formate dehydrogenase, and ascorbate peroxidase was increased. In leaves of the Fe-sufficient and -deficient mutant, Cu-containing chloroplastic and cytosolic superoxide dismutase (Cu-Zn) and plastocyanin (Cu) were nearly absent. This low plastocyanin content could be restored by supplying Cu via the xylem, but the superoxide dismutase levels could not be increased by this treatment. The differences in the protein patterns between wild type and mutant indicate that the apparent Fe deficiency of mutant plants led to an increase in enzymes involved in anaerobic metabolism as well as enzymes involved in stress defense. The biosynthesis of plastocyanin was diminished in mutant leaves, but it was differentially induced by increased Cu content.
Development of chlorosis and loss of PSII were compared in young spinach plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll could be detected already after the first week of deficiency and preceded any permanent functional inhibition of PSII as detected by changes in the chlorophyll fluorescence parameter Fv/Fm. A substantial decrease in Fv/Fm was observed only after the second week of deficiency. After 4 weeks, the plants had lost about 70% of their original chlorophyll content, but fluorescence data indicated that 80% of the existing PSII centers were still capable of initiating photosynthetic electron transport. The degradation of the photosynthetic apparatus without loss of PSII activity was due to changes in protein turnover, especially of the PSII D1 reaction center protein. Already by day 7 of deficiency, a 1.4‐fold increase in D1 protein synthesis was observed measured as incorporation of 14C‐leucine. Immunological determination by western‐blotting did not reveal a change in D1 protein content. Thus, D1 protein was also degraded more rapidly. The increased turnover was high enough to prevent any loss or inhibition of PSII. After 3 weeks, D1 protein synthesis on a chlorophyll basis was further increased by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%. Immunological determination revealed that together with the D1 protein also other polypeptides of PSII became degraded. This process prevented a large accumulation of photo‐inactivated PSII centers. However, it initiated the breakdown of the other thylakoid proteins, especially of LHCII, resulting in the observed chlorosis. Together with the change in protein turnover and stability, a characteristic change in thylakoid protein phosphorylation was observed. In the deficient plants steady state phosphorylation of both LHCII and PSII proteins was increased in the dark. In the light phosphorylation of PSII proteins was stimulated and after 3 weeks of deficiency was even higher in the deficient leaves than in the control plants. In contrast, the phosphorylation level of LHCII decreased in the light and could hardly be detected after 3 weeks of deficiency. Phosphorylation of the reaction center polypeptides presumably increased their stability against proteolytic attack, whereas phosphorylated LHCII seems to be the substrate for proteolysis.
The tomato mutant chloronewa exhibits a defect in iron-uptake regulation. Despite high apoplastic and symplastic iron concentrations, the mutant shows characteristic symptoms of iron deficiency. Using a subtractive-hybridisation approach, we have screened for cDNA clones specific for genes with altered expression in wild-type versus mutant root tissue. Based on this clone collection, we have isolated and characterised a 2075-bp full-length cDNA encoding a lysyl-tRNA-synthetase-like protein. The corresponding gene is localised as a single copy on chromosome 10. Its expression is strongly induced by changes in the iron status of the plant. This iron-dependent regulation is superimposed upon a strict root specificity of gene expression. Possible functions of the gene product other than in protein biosynthesis will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.