Natural zeolites are hydrated aluminosilicate minerals that, due to their remarkable physical-chemical properties of being molecular sieves and cation exchangers, have applications in different areas such as environmental protection, catalysis, animal feed, and dietary supplements. Since natural zeolites may contain traces of undesirable compounds such as toxic metals, the accurate quantification of these elements is necessary. In this study, a direct method for Hg determination in zeolite samples based on the thermal desorption atomic absorption spectrometry (TD-AAS) technique is fully validated, taking into account the legislative requirements in the field. The chosen quantification limit was 0.9 µg kg−1, which is satisfactory for intended use. Trueness was evaluated by recovery rate using certified reference materials containing mercury, with satisfactory results. Other figures of merit, such as repeatability and measurement uncertainty, also fulfill the legislative requirements related to the analysis of dietary supplements. This paper presents, for the first time, a fully validated method for mercury determination in zeolite samples, and the obtained results reveal that the method can be applied successfully for the intended purpose.
The aim of this study was to investigate the use of natural zeolite as support for microbial community formation during wastewater treatment. Scanning electron microscopy (SEM), thermal decomposition and differential thermogravimetric curves (TGA/DGT) techniques were used for the physicochemical and structural characterization of zeolites. The chemical characterization of wastewater was performed before and after treatment, after 30 days of using stationary zeolite as support. The chemical composition of wastewater was evaluated in terms of the products of nitrification/denitrification processes. The greatest ammonium (NH4+) adsorption was obtained for wastewater contaminated with different concentrations of ammonium, nitrate and nitrite. The wastewater quality index (WWQI) was determined to assess the effluent quality and the efficiency of the treatment plant used, showing a maximum of 71% quality improvement, thus suggesting that the treated wastewater could be discharged into aquatic environments. After 30 days, NH4+ demonstrated a high removal efficiency (higher than 98%), while NO3+ and NO2+ had a removal efficiency of 70% and 54%, respectively. The removal efficiency for metals was observed as follows (%): Mn > Cd > Cr > Zn > Fe > Ni > Co > Cu > Ba > Pb > Sr. Analysis of the microbial diversity in the zeolite samples indicated that the bacteria are formed due to the existence of nutrients in wastewater which favor their formation. In addition, the zeolite was characterized by SEM and the results indicated that the zeolite acts as an adsorbent for the pollutants and, moreover, as a support material for microbial community formation under optimal conditions. Comparing the two studied zeolites, NZ1 (particle size 1–3 mm) was found to be more suitable for wastewater treatment. Overall, the natural zeolite demonstrated high potential for pollutant removal and biomass support for bacteria community growth in wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.