Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe3O4–TiO2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO2) through a modified sol-gel process onto preformed magnetite (Fe3O4) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe3O4 and TiO2 magnetic and optical properties, respectively.
Summary
Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater‐to‐moderately saline stratum (0–3 m), an intermediate stratum exhibiting a steep halocline (3–3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light‐dependent communities in the upper layer (≥0.987–0.990 water‐activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958–0.956 water activity) at 3–3.5 to 4 m; (ii) communities that might be involved in carbon‐ and sulphur‐cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon‐ and sulphur‐cycling); and (iv) that species richness and habitat stability are associated with high redox‐potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.
Background: The paper presents the development, validation, and evaluation of measurement uncertainty of a method for quantitative determination of essential and nonessential elements in medicinal plants and their aqueous extracts by using inductively coupled plasma optical emission spectrometry. Methods: The detailed validation of the analytical procedure and calculation of the measurement uncertainty budget allowed the recognition of the methods' critical points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.