Ullrich disease (congenital muscular dystrophy type Ullrich, UCMD) is a severe congenital disorder of muscle caused by recessive and dominant mutations in the three genes that encode the alpha-chains of collagen type VI. Little is known about the early pathogenesis of this myopathy. The aim of this study was to investigate early histological changes in muscle of patients with molecularly confirmed UCMD. Muscle biopsies were analyzed from 8 UCMD patients ranging in age from 6 to 30 months. Type I fiber atrophy and predominance were seen early, together with a widening of the fiber diameter spectrum, whereas no dystrophic features were apparent. A subpopulation of more severely atrophic type I fibers was apparent subsequently, including one biopsy that fulfilled the formal diagnostic criteria of histopathological fiber type disproportion (FTD). Thus, early in the disease, UCMD presents as a non-dystrophic myopathy with predominant fiber atrophy. Collagen VI mutations also qualify as a cause of fiber type disproportion.
BackgroundProcessing by γ-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs) that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of γ-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of γ-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways.Methodology/Principal FindingsTo identify genes and molecular functions transcriptionally affected by γ-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO) cells with enhanced and inhibited γ-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to γ-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by γ-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices.Conclusions/SignificanceInvestigating the effects of γ-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant potential for a better understanding of the biology of γ-secretase and its roles in cancer and Alzheimer's disease pathology.
Clinical manifestations of severe COVID-19 include coagulopathies that are exacerbated by the formation of neutrophil extracellular traps (NETs). Here, we report that pulmonary lymphatic vessels, which traffic neutrophils and other immune cells to the lung-draining lymph node (LDLN), can also be blocked by fibrin clots in severe COVID-19. Immunostained tissue sections from COVID-19 decedents revealed widespread lymphatic clotting not only in the lung, but notably in the LDLN, where the extent of clotting correlated with the presence of abnormal, regressed, or missing germinal centers. it strongly correlated with the presence of intralymphatic NETs. In mice, TNFα induced intralymphatic fibrin clots, and this could be inhibited by DNAse 1, which degrades NETs. In vitro, TNF induced lymphatic endothelial cell upregulation of ICAM-1 and CXCL8 among other neutrophil-recruiting factors as well as thrombomodulin downregulation. Furthermore, in decedents, lymphatic clotting in LDLNs. In a separate cohort of hospitalized patients, serum levels of MPO-DNA (a NET marker) inversely correlated with antiviral antibody titers, but D-dimer levels, indicative of blood thrombosis, did not correlate with either. In fact, patients with high MPO-DNA but low D-dimer levels generated poor anti-viral antibody titers. This study introduces lymphatic coagulation in lungs and LDLNs as a clinical manifestation of severe COVID-19 and suggests the involvement of NETosis of lymphatic-trafficking neutrophils. It further suggests that lymphatic clotting may correlate with impaired formation or maintenance of germinal centers necessary for robust antiviral antibody responses, although further studies are needed to determine whether and how lymphatic coagulation impacts adaptive immune responses.
Lymphatic vessels provide a critical line of communication between peripheral tissues and their draining lymph nodes, which is necessary for robust immune responses against infectious agents. At the same time, lymphatics help shape the nature and kinetics of immune responses to ensure resolution, limit tissue damage, and prevent autoimmune responses. A variety of pathogens have developed strategies to exploit these functions, from multicellular organisms like nematodes to bacteria, viruses, and prions. While lymphatic vessels serve as transport routes for the dissemination of many pathogens, their hypoxic and immune-suppressive environments can provide survival niches for others. Lymphatics can be exploited as perineural niches, for inter-organ distribution among highly motile carrier cells, as effective replicative niches, and as alternative routes in response to therapy. Recent studies have broadened our understanding of lymphatic involvement in pathogenic spread to include a wider range of pathogens, as well as new mechanisms of exploitation, which we summarize here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.