Claudin-1 overexpression and Δ2-TGZ treatment are associated to apoptosis in MDA-MB-231 and Hs578T "claudin-1-low" TNBC. Moreover, in MDA-MB-231 cells, claudin-1 is involved in the pro-apoptotic effect of Δ2-TGZ. Our results suggest that claudin-1 re-expression could be an interesting therapeutic strategy for "claudin-1-low" TNBC.
Triple-negative "claudin 1 low" subtype represents around 15% of breast cancer and displays poor prognosis. The loss of claudin 1 is correlated with increased invasiveness and higher recurrence of the disease. Claudin 1 constitutes the backbone of the tight junction and is involved in cell-cell adhesion and migration processes. However, studies showed a controversial role of claudin 1 in cell migration. In this study, we aimed to clarify the effect of claudin 1 on migration of mesenchymal triple-negative breast cancer cells (TNBC). We reported that transient over expression of claudin 1 in MDA-MB-231 and Hs578T "claudin 1 low" TNBC cells inhibited cell migration using wound healing and transwell migration assays. In order to investigate more specifically the involvement of claudin 1, we generated stable MDA-MB-231 clones overexpressing claudin 1. Interestingly, the level of claudin 1 was correlated to the inhibition of cell migration and to the increase of cellcell aggregation associated with enhanced formation of β-catenin adherens junction and occludin tight junction. Finally, we reported for the first time the key role of claudin 1 in the inhibition of cell migration process associated with the disappearance of stress fibers. These data suggest that re-expression of claudin 1 could be a promising strategy for regulating the migration of TNBC which no longer express claudin 1. Keywords Triple negative breast cancer • Claudin 1 • Migration • Stress fiber • Cell junctions Abbreviations CLDN1 Claudin 1 TJ Tight junction EMT Epithelial-mesenchymal transition MSL Mesenchymal-stem-like DOCK Dedicator of cytokinesis AJ Adherent junction ZO-1 Zonula occludens-1 TNBC Triple negative breast cancer FCS Fetal calf serum PDZ-domain-binding-motif PSD95, DlgA, ZO-1 domain binding motif CSRP2 Cysteine-rich-protein 2 Electronic supplementary material The online version of this article (
15-Deoxy-∆12,14-prostaglandin J2 (15d‑PGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15d‑PGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15d‑PGJ2 (b‑15d‑PGJ2) on hormone-dependent MCF‑7 and triple‑negative MDA‑MB‑231 breast cancer cell lines. b‑15d‑PGJ2 inhibited cell proliferation more efficiently than 15d‑PGJ2 or the synthetic PPARγ agonist, efatutazone. b‑15d‑PGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b‑15d‑PGJ2 in competition assays. Of note, b‑15d‑PGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b‑15d‑PGJ2 and 15d‑PGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP‑1) and caspase‑7, that usually occurs following b‑15d‑PGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15d‑PGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.