The mitochondrial permeability transition pore is a high conductance channel whose opening leads to an increase of mitochondrial inner membrane permeability to solutes with molecular masses up to ≈ 1500 Da. In this review we trace the rise of the permeability transition pore from the status of in vitro artifact to that of effector mechanism of cell death. We then cover recent results based on genetic inactivation of putative permeability transition pore components, and discuss their meaning for our understanding of pore structure. Finally, we discuss evidence indicating that the permeability transition pore plays a role in pathophysiology, with specific emphasis on in vivo models of disease.
Superoxide is known to affect vascular physiology in several ways and has also been recognized to contribute significantly to vascular physiopathology. Here we discuss the emerging role of superoxide as an essential signaling molecule in normal physiology.
Opening of the permeability transition pore (PTP), a high-conductance mitochondrial channel, causes mitochondrial dysfunction with Ca2+ deregulation, ATP depletion, release of pyridine nucleotides and of mitochondrial apoptogenic proteins. Despite major efforts, the molecular nature of the PTP remains elusive. A compound library screening led to the identification of a novel high affinity PTP inhibitor (Ro 68-3400), which labeled a approximately 32 kDa protein that was identified as isoform 1 of the voltage-dependent anion channel (VDAC1) [A.M. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein, H. Langen, P. Polcic, M.A. Forte, P. Bernardi, J.A. Kemp, The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J. Biol. Chem. 278 (2003) 49812-49818]. In order to assess the role of VDAC1 in PTP formation and activity, we have studied the properties of mitochondria from VDAC1(-/-) mice. The basic properties of the PTP in VDAC1(-/-) mitochondria were indistinguishable from those of strain-matched mitochondria from wild-type CD1 mice, including inhibition by Ro 68-3400, which labeled identical proteins of 32 kDa in both wild-type and VDAC1(-/-) mitochondria. The labeled protein could be separated from all VDAC isoforms. While these results do not allow to exclude that VDAC is part of the PTP, they suggest that VDAC is not the target for PTP inhibition by Ro 68-3400.
1 Reactive oxygen species (ROS) have been proposed to play a role in the side e ects of the immunosuppressive drug cyclosporin A (CsA). 2 The aim of this study was to investigate whether cytochrome P-450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may in¯uence the CYP system to produce ROS. 3 We show that CsA (1 ± 10 mM) generated antioxidant-inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the¯uorescent probe 2,7-dichloro¯uorescin diacetate. 4 Using cytochrome c as substrate, we show that CsA (10 mM) did not inhibit NADPH cytochrome P-450 reductase in microsomes prepared from rat liver, kidney or RASMC. 5 CsA (10 mM) did not uncouple the electron¯ow from NADPH via NADPH cytochrome P-450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. 6 CsA (10 mM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5-3A4 cells) than in control cells that do not express CYP 3A4. 7 Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5-3A4 cells. 8 These results demonstrate that CYP enzymes do not contribute to CsA-induced ROS formation and that CsA neither inhibits NADPH cytochrome P-450 reductase nor the electron transfer to the CYP enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.