Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs.
MUS81 is conserved among plants, animals, and fungi and is known to be involved in mitotic DNA damage repair and meiotic recombination. Here we present a functional characterization of the Arabidopsis thaliana homolog AtMUS81, which has a role in both mitotic and meiotic cells. The AtMUS81 transcript is produced in all tissues, but is elevated greater than 9-fold in the anthers and its levels are increased in response to gamma radiation and methyl methanesulfonate treatment. An Atmus81 transfer-DNA insertion mutant shows increased sensitivity to a wide range of DNA-damaging agents, confirming its role in mitotically proliferating cells. To examine its role in meiosis, we employed a pollen tetrad–based visual assay. Data from genetic intervals on Chromosomes 1 and 3 show that Atmus81 mutants have a moderate decrease in meiotic recombination. Importantly, measurements of recombination in a pair of adjacent intervals on Chromosome 5 demonstrate that the remaining crossovers in Atmus81 are interference sensitive, and that interference levels in the Atmus81 mutant are significantly greater than those in wild type. These data are consistent with the hypothesis that AtMUS81 is involved in a secondary subset of meiotic crossovers that are interference insensitive.
Recombination, in the form of cross-overs (COs) and gene conversion (GC), is a highly conserved feature of meiosis from fungi to mammals. Recombination helps ensure chromosome segregation and promotes allelic diversity. Lesions in the recombination machinery are often catastrophic for meiosis, resulting in sterility. We have developed a visual assay capable of detecting Cos and GCs and measuring CO interference in Arabidopsis thaliana. This flexible assay utilizes transgene constructs encoding pollen-expressed fluorescent proteins of three different colors in the qrt1 mutant background. By observing the segregation of the fluorescent alleles in 92,489 pollen tetrads, we demonstrate (i) a correlation between developmental position and CO frequency, (ii) a temperature dependence for CO frequency, (iii) the ability to detect meiotic GC events, and (iv) the ability to rapidly assess CO interference.cross-over ͉ meiosis ͉ tetrad ͉ gene conversion ͉ interference
BackgroundConsiderable clinical heterogeneity has been well documented amongst individuals with autism spectrum disorders (ASD). However, little is known about the biological mechanisms underlying phenotypic diversity. Genetic studies have established a strong causal relationship between ASD and molecular defects in the SHANK3 gene. Individuals with various defects of SHANK3 display considerable clinical heterogeneity. Different lines of Shank3 mutant mice with deletions of different portions of coding exons have been reported recently. Variable synaptic and behavioral phenotypes have been reported in these mice, which makes the interpretations for these data complicated without the full knowledge of the complexity of the Shank3 transcript structure.MethodsWe systematically examined alternative splicing and isoform-specific expression of Shank3 across different brain regions and developmental stages by regular RT-PCR, quantitative real time RT-PCR (q-PCR), and western blot. With these techniques, we also investigated the effects of neuronal activity and epigenetic modulation on alternative splicing and isoform-specific expression of Shank3. We explored the localization and influence on dendritic spine development of different Shank3 isoforms in cultured hippocampal neurons by cellular imaging.ResultsThe Shank3 gene displayed an extensive array of mRNA and protein isoforms resulting from the combination of multiple intragenic promoters and extensive alternative splicing of coding exons in the mouse brain. The isoform-specific expression and alternative splicing of Shank3 were brain-region/cell-type specific, developmentally regulated, activity-dependent, and involved epigenetic regulation. Different subcellular distribution and differential effects on dendritic spine morphology were observed for different Shank3 isoforms.ConclusionsOur results indicate a complex transcriptional regulation of Shank3 in mouse brains. Our analysis of select Shank3 isoforms in cultured neurons suggests that different Shank3 isoforms have distinct functions. Therefore, the different types of SHANK3 mutations found in patients with ASD and different exonic deletions of Shank3 in mutant mice are predicted to disrupt selective isoforms and result in distinct dysfunctions at the synapse with possible differential effects on behavior. Our comprehensive data on Shank3 transcriptional regulation thus provides an essential molecular framework to understand the phenotypic diversity in SHANK3 causing ASD and Shank3 mutant mice.
A pericellular proteolytic pathway initiated by the transmembrane serine protease matriptase plays a critical role in the terminal differentiation of epidermal tissues. Matriptase is constitutively expressed in multiple other epithelia, suggesting a putative role of this membrane serine protease in general epithelial homeostasis. Here we generated mice with conditional deletion of the St14 gene, encoding matriptase, and show that matriptase indeed is essential for the maintenance of multiple types of epithelia in the mouse. Thus, embryonic or postnatal ablation of St14 in epithelial tissues of diverse origin and function caused severe organ dysfunction, which was often associated with increased permeability, loss of tight junction function, mislocation of tight junction-associated proteins, and generalized epithelial demise. The study reveals that the homeostasis of multiple simple and stratified epithelia is matriptase-dependent, and provides an important animal model for the exploration of this membrane serine protease in a range of physiological and pathological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.