Amplification or overexpression of neuronal MYC (MYCN) is associated with poor prognosis of human neuroblastoma. Three isoforms of the MYCN protein have been described as well as a protein encoded by an antisense transcript (MYCNOS) that originates from the opposite strand at the MYCN locus. Recent findings suggest that some antisense long non-coding RNAs (lncRNAs) can play a role in epigenetically regulating gene expression. Here we report that MYCNOS transcripts function as a modulator of the MYCN locus, affecting MYCN promoter usage and recruiting various proteins, including the Ras GTPase-activating protein-binding protein G3BP1, to the upstream MYCN promoter. Overexpression of MYCNOS results in a reduction of upstream MYCN promoter usage and increased MYCN expression, suggesting that the protein-coding MYCNOS also functions as a regulator of MYCN ultimately controlling MYCN transcriptional variants. The observations presented here demonstrate that protein-coding transcripts can regulate gene transcription and can tether regulatory proteins to target loci.
Small noncoding antisense RNAs (sasRNAs) guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.