Recent research efforts have significantly advanced our knowledge on Asian freshwater mussel (Bivalvia: Unionida) diversity and distribution. Here we provide a modern consensus of the diversity, biogeography and conservation of Unionida in the region comprising East and Southeast Asia (excluding Wallacea) and Asian Russia. A data review confirmed the presence of 228 native and 3 non-native Unionida (98% Unionidae, 2% Margaritiferidae), rendering the region a global hotspot of freshwater mussel diversity. Species richness was highest in China (particularly Yangtze basin) in absolute numbers and Cambodia when correcting for country area, and decreased gradually towards the south and steeply towards the north and east. Six of the seven unionid subfamilies are native to the region, with species richness peaking in Southeast Asia for Rectidentinae, Gonideinae, Parreysiinae and Modellnaiinae, China for Anodontinae and Unioninae, and Asian Russia for Margaritiferidae. Conservation status and data collected after 1980 were not available for 61 and 24% of species, respectively. Dams, deforestation and pollution are likely the major threats to mussels in the region, though data in this
Human activities such as transport, trade and tourism are likely to influence the spatial distribution of non-native species and yet, Species Distribution Models (SDMs) that aim to predict the future broad scale distribution of invaders often rely on environmental (e.g. climatic) information only. This study investigates if and to what extent do human activities that directly or indirectly influence nature (hereafter the human footprint) affect the global distribution of invasive species in terrestrial, freshwater and marine ecosystems. We selected 72 species including terrestrial plants, terrestrial animals, freshwater and marine invasive species of concern in a focus area located in NW Europe (encompassing Great Britain, France, The Netherlands and Belgium). Species Distribution Models were calibrated with the global occurrence of species and a set of high-resolution (9×9 km) environmental (e.g. topography, climate, geology) layers and human footprint proxies (e.g. the human influence index, population density, road proximity). Our analyses suggest that the global occurrence of a wide range of invaders is primarily limited by climate. Temperature tolerance was the most important factor and explained on average 42% of species distribution. Nevertheless, factors related to the human footprint explained a substantial amount (23% on average) of species distributions. When global models were projected into the focus area, spatial predictions integrating the human footprint featured the highest cumulative risk scores close to transport networks (proxy for invasion pathways) and in habitats with a high human influence index (proxy for propagule pressure). We conclude that human related information–currently available in the form of easily accessible maps and databases—should be routinely implemented into predictive frameworks to inform upon policies to prevent and manage invasions. Otherwise we might be seriously underestimating the species and areas under highest risk of future invasions.
a b s t r a c t Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032 bp (COI + 28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.
Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens
Freshwater mussels (Bivalvia: Unionidae) is a diverse family with around 700 species being widespread in the Northern Hemisphere and Africa. These animals fulfill key ecological functions and provide important services to humans. Unfortunately, populations have declined dramatically over the last century, rendering Unionidae one of the world's most imperiled taxonomic groups. In Far East Asia (comprising Japan, Korea, and Eastern Russia), conservation actions have been hindered by a lack of basic information on the number, identity, distribution and phylogenetic relationships of species. Available knowledge is restricted to studies on national and sub-national levels. The present study aims to resolve the diversity, biogeography and evolutionary relationships of the Far East Asian Unionidae in a globally comprehensive phylogenetic and systematic context.We reassessed the systematics of all Unionidae species in the region, including newly collected specimens from across Japan, South Korea, and Russia, based on molecular (including molecular species delineation and a COI + 28S phylogeny) and comparative morphological analyses. Biogeographical patterns were then assessed based on available species distribution data from the authors and previous reference works.We revealed that Unionidae species richness in Far East Asia is 30% higher than previously assumed, counting 43 species (41 native + 2 alien) within two Unionidae subfamilies, the Unioninae (32 + 1) and Gonideinae (9 + 1). Four of these species are new to science, i.e. Beringiana gosannensissp. nov., Beringiana fukuharai sp. nov., Buldowskia kamiyai sp. nov., and Koreosolenaia sitgyensis gen. & sp. nov. We also propose a replacement name for Nodularia sinulata, i.e. Nodularia breviconcha nom. nov. and describe a new tribe (Middendorffinaiini tribe nov.) within the Unioninae subfamily. Biogeographical patterns indicate that this fauna is related to that from China south to Vietnam until the Mekong River basin. The Japanese islands of Honshu, Shikoku, Kyushu, Hokkaido, and the Korean Peninsula were identified as areas of particularly high conservation value, owing to high rates of endemism, diversity and habitat loss. The genetically unique species within the genera Amuranodonta, Obovalis, Koreosolenaia gen. nov., and Middendorffinaia are of high conservation concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.