Organic electron donors are of importance for a number of applications. However, the factors that are essential for a directed design of compounds with desired reduction power are not clear. Here, we analyze these factors in detail. The intrinsic reduction power, which neglects the environment, has to be separated from extrinsic (e.g., solvent) effects. This power could be quantified by the gas-phase ionization energy. The experimentally obtained redox potentials in solution and the calculated ionization energies in a solvent (modeled with the conductor-like screening model (COSMO)) include both intrinsic and extrinsic factors. An increase in the conjugated π-system of organic electron donors leads to an increase in the intrinsic reduction power, but also decreases the solvent stabilization. Hence, intrinsic and extrinsic effects compete against each other; generally the extrinsic effects dominate. We suggest a simple relationship between the redox potential in solution and the gas-phase ionization energy and the volume of an organic electron donor. We finally arrive at formulas that allow for an estimate of the (gas-phase) ionization energy of an electron donor or the (gas-phase) electron affinity of an electron acceptor from the measured redox potentials in solution. The formulas could be used for neutral organic molecules with no or only small static dipole moment and relatively uniform charge distribution after oxidation/reduction.
The redox-active GFA (Guanidino-Functionalized Aromatic compound) 1,4,5,8-tetrakis(tetramethylguanidino)-naphthalene (6) is used to synthesize new dinuclear copper complexes of the formula [6(CuX2)2] with different electronic structures. With X = OAc, a dinuclear Cu(II) complex of the neutral GFA is obtained (electronic structure [Cu(II)-GFA-Cu(II)], two unpaired electrons), and with X = Br a diamagnetic dinuclear Cu(I) complex of the dicationic GFA (electronic structure [Cu(I)-GFA(2+)-Cu(I)], closed-shell singlet state). The different electronic structures lead to significant differences in the optical, structural and magnetic properties of the complexes. Furthermore, the complex [6(CuI)2](2+) (electronic structure [Cu(I)-GFA(2+)-Cu(I)], closed-shell singlet state) is synthesized by reaction of 6(2+) with two equivalents of CuI. Slow decomposition of this complex in solution leads to the fluorescent dye 2,7-bis(dimethylamino)-1,3,6,8-tetraazapyrene. In an improved synthesis of this tetraazapyrene, 6 is reacted with CuBr in the presence of dioxygen. Quantum chemical calculations show that the addition of counter-ligands to the trigonal planar Cu(I) atoms of [6(CuI)2](2+) favors or disfavors one of the electronic structures, depending on the nature of the counter-ligand.
A series of sterically and electronically fine-tuned, chelating diphosphine ligands were synthesized. The ligands are analogues of Triptyphos (TTP, 1), all based upon a variably 9,10-two-carbon-bridged 9,10-dihydroanthracene scaffold. These new TTP-type ligands were employed in the Ni(0)catalyzed isomerization of 2-methyl-3-butenenitrile (2M3BN), one of the key steps of industrial adiponitrile production by the DuPont process. The reaction showed a surprising preference for ligands bearing electron-donating substituents, such as methoxy or methyl groups, in the phenyl para position of the Ni-ligating PPh 2 units. Octyltriptyphos (3) afforded the highest 2M3BN-isomerization turnover rate yet reported. A series of deuterium-labeling experiments was performed to investigate the possibility of an isomerization mechanism consisting of a cascade of de-and rehydrocyanation steps, which could be excluded. Using the ethano-bridged ligand 4, complex 16a (4-κP:κP 0 )Ni(η 3 -C 4 H 7 )CN (supposedly an intermediate of the 2M3BN-isomerization reaction) was isolated, and its solid-state structure was determined by X-ray diffraction analysis. The complete catalytic cycle of 2M3BN isomerization with ligand 4, as suggested by the available experimental evidence, was modeled using DFT methods.
The possibility of directed stimulation of intramolecular electron transfer between a metal and a redox-active ligand in a molecular coordination compound is the key to its application in molecular catalysis and other research themes. Although the stimulation by a substitution reaction of the co-ligands is often postulated as key step in catalytic cycles using redox-active ligands as electron reservoirs, there are only a few explicit examples for such reactions. Herein we report the synthesis of the first dicationic and dinuclear CuI complexes featuring the oxidized form of a redox-active tetrakisguanidine ligand (1,2,4,5-tetrakis(tetramethylguanidino)benzene 1) as a bridging ligand and two neutral co-ligands L (acetonitrile or pyridine), [1{Cu(Cl)L}2]2+. An intramolecular electron transfer between the copper atom and the tetrakisguanidine ligand 1, leading to a dinuclear CuII complex with the reduced form of the tetrakisguanidine ligand 1, is triggered by substitution of the neutral co-ligands L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.