The redox-active GFA (Guanidino-Functionalized Aromatic compound) 1,4,5,8-tetrakis(tetramethylguanidino)-naphthalene (6) is used to synthesize new dinuclear copper complexes of the formula [6(CuX2)2] with different electronic structures. With X = OAc, a dinuclear Cu(II) complex of the neutral GFA is obtained (electronic structure [Cu(II)-GFA-Cu(II)], two unpaired electrons), and with X = Br a diamagnetic dinuclear Cu(I) complex of the dicationic GFA (electronic structure [Cu(I)-GFA(2+)-Cu(I)], closed-shell singlet state). The different electronic structures lead to significant differences in the optical, structural and magnetic properties of the complexes. Furthermore, the complex [6(CuI)2](2+) (electronic structure [Cu(I)-GFA(2+)-Cu(I)], closed-shell singlet state) is synthesized by reaction of 6(2+) with two equivalents of CuI. Slow decomposition of this complex in solution leads to the fluorescent dye 2,7-bis(dimethylamino)-1,3,6,8-tetraazapyrene. In an improved synthesis of this tetraazapyrene, 6 is reacted with CuBr in the presence of dioxygen. Quantum chemical calculations show that the addition of counter-ligands to the trigonal planar Cu(I) atoms of [6(CuI)2](2+) favors or disfavors one of the electronic structures, depending on the nature of the counter-ligand.
Ortho substituted octaazaperopyrenes (OAPPs) are a new class of functional dyes characterized by their strong electron‐accepting behavior. Herein, the synthesis, as well as the electrochemical and photo physical properties of an OAPP dye, is reported. The OAPP target was prepared via selective nucleophilic substitution at the peri position of a bay chlorinated tetraazaperylene by introduction of four amino‐substituents. The resulting tetraminoperylene was reacted with different acyl chlorides and anhydrides to give the twisted bay chlorinated OAPP derivatives which were isolated in their reduced dihydro‐form. The OAPP target could be obtained via a palladium catalyzed dehalogenation and a subsequent oxidation. The eightfold isosteric [CH→N] replacement within the peropyrene core structure results in a large decrease of the frontier orbital energies, rendering the target compound a potent oxidant while preserving the planarity of the aromatic core. The radical anion was obtained by reduction of the OAPP with KC8 and characterized by EPR spectroscopy. A general discussion of the number and location of [CH→N] replacements in peropyrene structures and their frontier orbital energies is provided.
Tetraazaperopyrenes (TAPPs) have been functionalized with thiophene and terthiophene units of different architecture resulting in a variety of organic donor-acceptor (D-A) compounds. The influence of the connection of the thiophenes to the TAPP core on their structural, photophysical and electrochemical properties has been studied in detail by a combination of X-ray crystallography, UV-vis and fluorescence spectroscopy as well as cyclic voltammetry, which allowed the establishment of structure-property relationships. The HOMO-LUMO gap is significantly decreased upon substitution of the TAPP core with electron-donating thiophene units, the extent of which is strongly influenced by the orientation of the thiophene units. The latter also crucially directs the molecular packing in the solid. Linkage at the α-position allows both inter- and intramolecular N···S interaction, whereas linkage in the β-position prevents intramolecular N···S interaction, resulting in a less pronounced conjugation of the TAPP core and the thiophene units. The new TAPP derivatives were processed as semiconductors in organic thin-film transistors (TFTs) that show ambipolar behavior. The insight into band gap and structure engineering may open up new possibilities to tailor the electronic properties of TAPP-based materials for certain desired applications.
Octaazaperopyrenedioxides (OAPPDOs) are a new class of fluorescent polycyclic aromatic hydrocarbons based on a tetraazaperylene core that is formally condensed with N‐substituted urea units in the two opposite peri positions. Here, we report the synthesis of series of substituted OAPPDO derivatives with different N‐substitution patterns (H, alkyl, benzyl) in the peri positions, including bay‐chlorinated OAPPDOs. Starting from the latter, a series of bay‐arylated OAPPDOs was synthesized by Suzuki cross coupling, which resulted in the formation of helically chiral OAPPDO derivatives. The electrochemical and photophysical properties were investigated by UV/Vis and fluorescence spectroscopy as well as cyclic voltammetry. The P and M enantiomers of a phenylated OAPPDO were separated by semipreparative HPLC and further analyzed by CD spectroscopy. The frontier orbital energies, the mechanism of the isomerization, the electronic excitation and the CD spectrum (TD‐DFT) were computed and compared to the experimental data. The reversible 1e− oxidation of the OAPPDOs generates the corresponding radical cations, one of which was characterized by EPR spectroscopy. The reversible oxidation process was also systematically investigated by spectro‐electrochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.