BackgroundAttempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game.MethodsNine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either “short” (1 minute) or “long” pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game.ResultsLactate and venous cfDNA increased more pronounced during “short” compared to “long” (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; p<0.001). Incremental exercise testing increased cfDNA 7.0-fold (p<0.001). The season game increased cfDNA 22.7-fold (p<0.0001), while lactate showed a 2.0-fold (p = 0.09) increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman’s r = 0.87, p = 0.0012), while no correlation between lactate and the tracking data could be found.DiscussionWe show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.
Ortho substituted octaazaperopyrenes (OAPPs) are a new class of functional dyes characterized by their strong electron‐accepting behavior. Herein, the synthesis, as well as the electrochemical and photo physical properties of an OAPP dye, is reported. The OAPP target was prepared via selective nucleophilic substitution at the peri position of a bay chlorinated tetraazaperylene by introduction of four amino‐substituents. The resulting tetraminoperylene was reacted with different acyl chlorides and anhydrides to give the twisted bay chlorinated OAPP derivatives which were isolated in their reduced dihydro‐form. The OAPP target could be obtained via a palladium catalyzed dehalogenation and a subsequent oxidation. The eightfold isosteric [CH→N] replacement within the peropyrene core structure results in a large decrease of the frontier orbital energies, rendering the target compound a potent oxidant while preserving the planarity of the aromatic core. The radical anion was obtained by reduction of the OAPP with KC8 and characterized by EPR spectroscopy. A general discussion of the number and location of [CH→N] replacements in peropyrene structures and their frontier orbital energies is provided.
The palladium catalyzed cyclotrimerization of ortho-silylaryl triflates as aryne precursors is meanwhile an established method to synthesize polycyclic aromatic hydrocarbons (PAHs) with triphenylene cores. During the palladium-catalyzed reaction of a pyrene with an osilylaryl triflate moiety in the K-region higher homologues with central eight-and ten-membered rings (the pyrenylenes) were found, besides the expected trimer and a protocol was developed to isolate all members of this series. This unprecedented new class of PAHs was fully investigated by all means, including X-ray diffraction of single-crystals, UV/Vis and fluorescence spectroscopy and theoretical calculations. Supported by density-functional theory (DFT) calculations, a mechanism of all higher cyclooligomers is proposed.
Originating from the hexagonal arrangement of magnetic ions in the presence of strong spin orbit coupling, α-RuCl3 is considered as model system for the Kitaev-Heisenberg model. While the magnetic properties of α-RuCl3 have been studied in bulk single crystals or micromechanically-exfoliated nanosheets, little is known about the nanosheets’ properties after exfoliation by techniques suitable for mass production such as liquid phase exfoliation (LPE). Here, we demonstrate sonication-assisted LPE on α-RuCl3 single crystals in an inert atmosphere. Coupled with centrifugation-based size selection techniques, the accessible size- and thickness range is quantified by statistical atomic force microscopy. Individual nanosheets obtained after centrifugation-based size selection are subjected to transmission electron microscopy to confirm their structural integrity after the exfoliation. The results are combined with bulk characterisation methods, including Raman and X-ray photoelectron spectroscopy, and powder diffraction experiments to evaluate the structural integrity of the nanosheets. We report changes of the magnetic properties of the nanomaterial with nanosheet size, as well as photospectroscopic metrics for the material concentration and average layer number. Finally, a quantitative analysis on environmental effects on the nanomaterial integrity is performed based on time and temperature dependent absorbance spectroscopy revealing a relatively slow decay (half-life of ~2,000 h at 20°C), albeit with low activation energies of 6‑20 kJ/mol.
The palladium catalyzed cyclotrimerization of ortho-silylaryl triflates as aryne precursors is meanwhile an established method to synthesize polycyclic aromatic hydrocarbons (PAHs) with triphenylene cores. During the palladium-catalyzed reaction of a pyrene with an osilylaryl triflate moiety in the K-region higher homologues with central eight-and ten-membered rings (the pyrenylenes) were found, besides the expected trimer and a protocol was developed to isolate all members of this series. This unprecedented new class of PAHs was fully investigated by all means, including X-ray diffraction of single-crystals, UV/Vis and fluorescence spectroscopy and theoretical calculations. Supported by density-functional theory (DFT) calculations, a mechanism of all higher cyclooligomers is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.