Nutritional programming, taking place in utero or early after birth, is closely linked with metabolic and appetite disorders in adulthood. Following the hypothesis that nutritional programming impacts hypothalamic neuronal organization, we report on discrepancies of multiple molecular and cellular early events that take place in the hypothalamus of rats submitted to intrauterine growth restriction (IUGR). Expression screening performed on hypothalami from IUGR rats at birth and at postnatal d 12 identified changes in gene expression of neurodevelopmental process (cell differentiation and cytoskeleton organization). Additionally, a slight reduction of agouti-related protein and a strong reduction of alpha-MSH-immunoreactive efferent fibers were demonstrated in the paraventricular nucleus of IUGR rats. Rapid catch-up growth of IUGR rats, 5 d after birth, had a positive effect on neurodevelopmental factors and on neuronal projections emanating from the arcuate nucleus. The molecular and cellular anomalies detected in IUGR rats can be related to the reduced and delayed plasma leptin surge from d 0-16 when compared with control and IUGR rats with catch-up growth. However, the ability of leptin to activate intracellular signaling in arcuate nucleus neurons was not reduced in IUGR rats. Other mechanism such as epigenetic regulation of the major appetite-regulating neuropeptides genes was analyzed in parallel with their mRNA expression during postnatal development. This study reveals the importance of an early catch-up growth that reduces abnormal organization of hypothalamic pathways involved in energy homeostasis, whereas protein restriction, maintained during postnatal development leads to an important immaturity of the hypothalamus.
Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.
The physiological signaling mechanisms that link glucose sensing to the electrical activity in metabolism-regulating hypothalamus are still controversial. Although ATP production was considered the main metabolic signal, recent studies show that the glucose-stimulated signaling in neurons is not totally dependent on this production. Here, we examined whether mitochondrial reactive oxygen species (mROS), which are physiologically generated depending on glucose metabolism, may act as physiological sensors to monitor the glucose-sensing response. Transient increase from 5 to 20 mmol/l glucose stimulates reactive oxygen species (ROS) generation on hypothalamic slices ex vivo, which is reversed by adding antioxidants, suggesting that hypothalamic cells generate ROS to rapidly increase glucose level. Furthermore, in vivo, data demonstrate that both the glucose-induced increased neuronal activity in arcuate nucleus and the subsequent nervous-mediated insulin release might be mimicked by the mitochondrial complex blockers antimycin and rotenone, which generate mROS. Adding antioxidants such as trolox and catalase or the uncoupler carbonyl cyanide m-chlorophenylhydrazone in order to lower mROS during glucose stimulation completely reverses both parameters. In conclusion, the results presented here clearly show that the brain glucosesensing mechanism involved mROS signaling. We propose that this mROS production plays a key role in brain metabolic signaling. Diabetes 55: 2084 -2090, 2006 E lucidating the signaling mechanisms by which cells sense nutrient or metabolic status, a vital process in energy homeostasis, is of prime importance. Glucose-sensing mechanisms have been mainly characterized in two tissues, both in the pancreas (at the -cell level) and in the brain (the so-called "glucose-stimulated" or "glucose-inhibited" neurons) (1,2). The cellular and molecular mechanisms underlying such glucose responsiveness appear to share similarities in the two glucose responsive cells (i.e., transport and phosphorylation by GLUT2 and glucokinase, respectively) and the consequent closure of ATP-sensitive K ϩ channels (K ATP channels) and calcium influx (3-5). Although ATP production used to be considered the main metabolic signal, recent studies show that the glucose-excited signaling in pancreatic -cells and neurons is not totally dependent on this production. Within the hypothalamus, a previous work showed that glucose challenge monitors K ATP closure independently of ATP level (6), and more recent data demonstrated that glucose-induced depolarization might occur through a new K ATP channel-independent mechanism, at least in some hypothalamic arcuate neurons (7). These studies suggest that ATP-independent intracellular signaling mechanisms leading to the stimulation of hypothalamic neurons by glucose might be present.Transient increase in glucose metabolism generates the key substrates NADH and FADH 2 for the mitochondria, and their use increases electron formation without modifying other complex constraints along the res...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.