The information richness of imprints topographies obtained after Berkovich nanoindentation tests at grain scale is assessed for identifying all or part of the parameters of a single crystal plasticity law. In a previous paper (Renner et al., 2016), the strong potential of imprints topographies has been shown through a large experimental campaign conducted on nickel samples. A 3D crystal plasticity finite element modelling (CPFEM) of the nanoindentation experiment using the Méric-Cailletaud has also showed a large sensitivity of residual topographies to the indenter/grain orientation and to the plastic parameters, including the interaction matrix coefficients specifying the interactions between dislocations on different slip systems. This makes imprints topographies very good candidates to provide information for the single crystal parameters identification. The present paper focuses on the Méric-Cailletaud law parameters identifiability using residual topographies. A method is built to define the best well-posed inverse problem to ensure the parameters identification using a crystal plasticity finite element modelling updating (CPFEMU) method. An identifiability index proposed by Richard et al. (Richard et al., 2013) for measuring the information richness of the indentation curve is extended to the analysis of residual topographies. This index quantifies the possibility to achieve a stable/unstable solution using an inverse method. For the studied behaviour, the results show that eight of the nine Méric-Cailletaud law parameters can be identified using three topographies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.