The objective of this study is to perform direct numerical simulations (DNS) of the three-dimensional short-wavelength elliptic instability developing in a counter-rotating vortex pair, and to reproduce numerically a water-tank experiment. The main features of the elliptic instability are recovered by the simulations. In particular, the spatial structure and the temporal evolution of the most amplified perturbation mode during the linear regime correspond to both experimental measurements and theoretical predictions. The long-term evolution is also simulated, and the stages leading to transition to turbulence are described. Some elements resulting from simulations related to the interaction between the short-wavelength elliptic instability and the long-wavelength Crow instability are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.