Strong polarization dependence is observed in the optical transmission through nanohole arrays in metals. It is shown that the degree of polarization is determined by the ellipticity and orientation of the holes; the polarization axis lies perpendicular to the broad edge of the ellipse. Furthermore, the depolarization ratio shows a squared dependence on the aspect ratio of the holes, which is discussed in terms of coupling into and out of the surface plasmon modes. The observed results will be useful for tailoring the polarization behavior of metallic nanophotonic elements in many applications, including surface plasmon enhanced optical sensing and ultrafast optical switching.
Biosensors based on surface plasmon resonance (SPR), operating with the Kretschmann conventional arrangement, have been employed for biomolecular detection of tumor markers. However, the traditional SPR configuration presents some experimental inconveniences that are overcome by using plasmonic substrates based on nanohole arrays manufactured in metallic films. This SPR configuration exhibits the extraordinary optical transmission (EOT) phenomenon, which is explored in the monitoring of binding events that occur on the metal surface. In this work, we proposed a plasmon biosensor based on nanohole arrays built on gold film operating in collinear transmission mode by using spectral investigation for signal transduction. The SPR substrate was coupled to a microfluidic system and showed good sensitivity and linearity. A concentration of 30 ng mL −1 of human epidermal receptor protein-2 (HER2) antigen (associated with breast cancer) was detected using the integrated device; this showed its great potential to be used in tumor diagnosis.
HER2 antigen is a marker used for breast cancer diagnosis and prevention. Its determination has great importance since breast cancer is one of the most insidious types of cancer in women. HER2 antigen assessment in human serum is traditionally achieved by enzyme-linked immunosorbent assay (ELISA method), but it has some disadvantages, such as suppressing the thermodynamic-kinetic studies regarding the antibody-antigen interaction, and the use of labeled molecules that can promote false positive responses. Biosensors based on surface plasmon resonance (SPR) are sensitive optical techniques widely applied on bioassays. The plasmonic devices do not operate with labeled molecules, overcoming conventional immunoassay limitations, and enabling a direct detection of target analytes. In this way, a new SPR biosensor to assess HER2 antigen has been proposed, using nanohole arrays on a gold thin film by signal transduction of transmitted light measurements from array image acquisitions. These metallic nanostructures may couple the light directly on surface plasmons using a simple collinear arrangement. The proposed device reached an average sensitivity for refractive index (RI) variation on a metal surface of 4146 intensity units/RIU (RIU = RI units). The device feasibility on biomolecular assessment was evaluated. For this, 3 ng ml known HER2 antigen concentration was efficiently flowed (using a microfluidic system) and detected from aqueous solutions. This outcome shows that the device may be a powerful apparatus for bioassays, particularly toward breast cancer diagnosis and prognosis.
We demonstrate digital plasmonic holography for direct in-plane imaging with propagating surface-plasmon waves. Imaging with surface plasmons suffers from the lack of simple in-plane lenses and mirrors. Lens-less digital holography techniques, however, rely on digitally decoding an interference pattern between a reference wave and an object wave. With far-field diffractive optics, this decoding scheme provides a full recording, i.e., a hologram, of the amplitude and phase of the object wave, giving three-dimensional information from a two-dimensional recording. For plasmonics, only a one-dimensional recording is needed, and both the phase and amplitude of the propagating plasmons can be extracted for high-resolution in-plane imaging. Here, we demonstrate lens-less, point-source digital plasmonic holography using two methods to record the plasmonic holograms: a dual-probe near-field scanning optical microscope and lithographically defined circular fluorescent screens. The point-source geometry gives in-plane magnification, allowing for high-resolution imaging with relatively lower-resolution microscope objectives. These results pave the way for a new form of in-plane plasmonic imaging, gathering the full complex wave, without the need for plasmonic mirrors or lenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.