We present experimental data illustrating that photochemical upconversion based on sensitized triplet−triplet annihilation can exhibit anti-Stokes emissions whose intensities with respect to the excitation power can vary between quadratic and linear using a noncoherent polychromatic light source. The benchmark upconverting composition consisting of Pd(II) octaethylporphyrin (PdOEP) sensitizers and 9,10-diphenylanthracene (DPA) acceptors/annihilators in toluene was selected to generate quadratic, intermediate, and linear behavior under both coherent and noncoherent excitation conditions. Each of these power laws was traversed in a single sample in one contiguous experiment through selective pumping of the sensitizer using an Ar + laser. Wavelength-dependent responses ranging from quadratic to pseudolinear were also recorded from the identical sample composition when excited by Xe lamp/monochromator output in a conventional fluorimeter, where the optical density at λ ex dictates the observed incident power dependence. Finally, pure linear behavior was derived from noncoherent excitation for the first time at higher sensitizer concentrations. SECTION: Kinetics, Spectroscopy
Upconversion photochemistry occurring between palladium(II) octaethylporphyrin (PdOEP, 1) and 9,10-diphenylanthracene (DPA, 2) in toluene successfully sensitizes nanostructured WO(3) photoanodes (E(g) = 2.7 eV) to sub-bandgap non-coherent green photons at low power density.
In the present study, the red-light absorbing platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP) was used as a triplet sensitizer in conjunction with two distinct iodophenyl-bearing BODIPY derivatives independently serving as triplet acceptors/annihilators poised for photon upconversion based on triplet-triplet annihilation. In deaerated benzene solutions, extremely stable and high quantum efficiency green (Phi(UC) = 0.0313 +/- 0.0005) and yellow (Phi(UC) = 0.0753 +/- 0.0036) upconverted emissions were observed from selective red excitation of the PtTPBP sensitizer at 635 +/- 5 nm. The current systems represent the first examples of photon upconversion where aromatic hydrocarbons do not serve the role of triplet acceptor/annihilator. Notably, the nature of the current chromophore compositions permitted highly reproducible upconversion quantum efficiency determinations while permitting the evaluation of the triplet-triplet annihilation quantum yields in both instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.