Artificial intelligence techniques are now being applied in different medical solutions ranging from disease screening to activity recognition and computer-aided diagnosis. The combination of computer science methods and medical knowledge facilitates and improves the accuracy of the different processes and tools. Inspired by these advances, this paper performs a literature review focused on state-of-the-art glaucoma screening, segmentation, and classification based on images of the papilla and excavation using deep learning techniques. These techniques have been shown to have high sensitivity and specificity in glaucoma screening based on papilla and excavation images. The automatic segmentation of the contours of the optic disc and the excavation then allows the identification and assessment of the glaucomatous disease’s progression. As a result, we verified whether deep learning techniques may be helpful in performing accurate and low-cost measurements related to glaucoma, which may promote patient empowerment and help medical doctors better monitor patients.
Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.