SUMMARY This study compared shape, size and length of the pharyngeal airway in individuals with and without obstructive sleep apnoea (OSA) using a novel endoscopic imaging technique, anatomical optical coherence tomography (aOCT). The study population comprised a preliminary study group of 20 OSA patients and a subsequent controlled study group of 10 OSA patients and 10 body mass index (BMI)-, gender-and agematched control subjects without OSA. All subjects were scanned using aOCT while awake, supine and breathing quietly. Measurements of airway cross-sectional area (CSA) and anteroposterior (A-P) and lateral diameters were obtained from the hypo-, oro-and velopharyngeal regions. A-P : lateral diameter ratios were calculated to provide an index of regional airway shape. In all subjects, pharyngeal CSA was lowest in the velopharynx. Patients with OSA had a smaller velopharyngeal CSA than controls (maximum CSA 91 ± 40 versus 153 ± 84 mm 2 ; P < 0.05) but comparable oro-(318 ± 80 versus 279 ± 129 mm 2 ; P = 0.48) and hypopharyngeal CSA (250 ± 105 versus 303 ± 112 mm 2 ; P = 0.36). In each pharyngeal region, the long axis of the airway was oriented in the lateral diameter. Airway shape was not different between the groups. Pharyngeal airway length was similar in both groups, although the OSA group had longer uvulae than the control group (16.8 ± 6.2 versus 11.2 ± 5.2 mm; P < 0.05). This study has shown that individuals with OSA have a smaller velopharyngeal CSA than BMI-, gender-and age-matched control volunteers, but comparable shape: a laterally oriented ellipse. These findings suggest that it is an abnormality in size rather than shape that is the more important anatomical predictor of OSA.
The upper airway changes from a more transversely oriented elliptical shape when supine to a more circular shape when in the lateral recumbent posture but without altering CSA. Increased circularity decreases propensity to tube collapse and may account for the postural dependency of OSA.
In this paper, we report on anatomical optical coherence tomography, a catheter-based optical modality designed to provide quantitative sectional images of internal hollow organ anatomy over extended observational periods. We consider the design and performance of an instrument and its initial intended application in the human upper airway for the characterization of obstructive sleep apnea (OSA). Compared with current modalities, the technique uniquely combines quantitative imaging, bedside operation, and safety for use over extended periods of time with no cumulative dose limit. Our experiments show that the instrument is capable of imaging subjects during sleep, and that it can record dynamic changes in airway size and shape.
We present a novel needle-based device for the measurement of refractive index and scattering using low-coherence interferometry. Coupled to the sample arm of an optical coherence tomography system, the device detects the scattering response of, and optical path length through, a sample residing in a fixed-width channel. We report use of the device to make near-infrared measurements of tissues and materials with known optical properties. The device could be used to exploit the refractive index variations of tissue for medical and biological diagnostics accessible by needle insertion.
Repetitive closure of the upper airway characterizes obstructive sleep apnea. It disrupts sleep causing excessive daytime drowsiness and is linked to hypertension and cardiovascular disease. Previous studies simulating the underlying fluid mechanics are based upon geometries, time-averaged over the respiratory cycle, obtained usually via MRI or CT scans. Here, we generate an anatomically correct geometry from data captured in vivo by an endoscopic optical technique. This allows quantitative real-time imaging of the internal cross section with minimal invasiveness. The steady inhalation flow field is computed using a k-ω shear-stress transport (SST) turbulence model. Simulations reveal flow mechanisms that produce low-pressure regions on the sidewalls of the pharynx and on the soft palate within the pharyngeal section of minimum area. Soft-palate displacement and side-wall deformations further reduce the pressures in these regions, thus creating forces that would tend to narrow the airway. These phenomena suggest a mechanism for airway closure in the lateral direction as clinically observed. Correlations between pressure and airway deformation indicate that quantitative prediction of the low-pressure regions for an individual are possible. The present predictions warrant and can guide clinical investigation to confirm the phenomenology and its quantification, while the overall approach represents an advancement toward patient-specific modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.